AI technologies outperform or complement radiologist scoring in CT, MRI, and ultrasound imaging for rheumatology disorders, as shown in key EULAR 2025 studies.
Key Details
- 1AI-assisted HRCT outperformed expert radiologists in detecting progression of SSc-associated interstitial lung disease (ILD).
- 2A deep learning model integrating MRI findings achieved high accuracy for diagnosing axial spondyloarthritis and identified cases beyond standard criteria.
- 3Ultrasound AI models improved classification of giant cell arteritis lesions but showed limitations in smaller arteries.
- 4Machine learning approaches identified personalized cancer risk factors in systemic sclerosis using clinical and imaging data.
- 5Large language models show promise but mixed performance in osteoporosis risk stratification tasks based on imaging and clinical data.
Why It Matters

Source
EurekAlert
Related News

AI Accurately Predicts Lymph Node Extension in HPV-related Throat Cancer via CT
An AI pipeline automates lymph node segmentation and extranodal extension prediction from CT in HPV-positive oropharyngeal cancer, correlating with patient outcomes.

AI-Enhanced CT Model Improves HCC Risk Prediction in Cirrhosis
Combining CT-based radiomics and deep learning features with clinical data enhances prediction of hepatocellular carcinoma risk in cirrhosis patients.

AI and fMRI Power Personalized TMS for Smoking Cessation at MUSC
MUSC researchers used machine learning on fMRI scans to predict which smokers would benefit from repetitive transcranial magnetic stimulation (rTMS) for quitting smoking.