AI technologies outperform or complement radiologist scoring in CT, MRI, and ultrasound imaging for rheumatology disorders, as shown in key EULAR 2025 studies.
Key Details
- 1AI-assisted HRCT outperformed expert radiologists in detecting progression of SSc-associated interstitial lung disease (ILD).
- 2A deep learning model integrating MRI findings achieved high accuracy for diagnosing axial spondyloarthritis and identified cases beyond standard criteria.
- 3Ultrasound AI models improved classification of giant cell arteritis lesions but showed limitations in smaller arteries.
- 4Machine learning approaches identified personalized cancer risk factors in systemic sclerosis using clinical and imaging data.
- 5Large language models show promise but mixed performance in osteoporosis risk stratification tasks based on imaging and clinical data.
Why It Matters

Source
EurekAlert
Related News

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.

Generative AI Significantly Improves Denoising of fMRI Brain Data
Boston College researchers developed a generative AI method that removes noise from fMRI brain scans, achieving over 200% improvement compared to prior techniques.