ECU researchers developed an AI algorithm that improves early detection and disease staging using medical imaging.
Key Details
- 1Supervised Contrastive Ordinal Learning algorithm was developed at Edith Cowan University.
- 2It uses imaging modalities such as bone density scans and ultrasounds for detection and staging.
- 3Achieved 85% accuracy and 79% sensitivity for Abdominal Aortic Calcification (early CVD indicator).
- 4Attained 87% accuracy/84% sensitivity in diagnosing Diabetic Retinopathy and 91% accuracy for breast cancer staging.
- 5Can differentiate between healthy and diseased individuals by learning disease-specific traits.
- 6Results will be presented at MICCAI Conference in Korea later this year.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Prediction of Knee Osteoarthritis Progression Using MRI and Biomarkers
A new AI-assisted model that combines MRI, biochemical, and clinical data improves predictions of worsening knee osteoarthritis.

AI Model Predicts Multiple Genetic Markers from Colorectal Pathology Slides
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.

Photonic Chip Enables Versatile Neural Networks for Imaging and Speech AI
Chinese scientists have developed a reconfigurable integrated photonic chip capable of running diverse neural networks, including those for image and speech processing, with high efficiency.