ECU researchers developed an AI algorithm that improves early detection and disease staging using medical imaging.
Key Details
- 1Supervised Contrastive Ordinal Learning algorithm was developed at Edith Cowan University.
- 2It uses imaging modalities such as bone density scans and ultrasounds for detection and staging.
- 3Achieved 85% accuracy and 79% sensitivity for Abdominal Aortic Calcification (early CVD indicator).
- 4Attained 87% accuracy/84% sensitivity in diagnosing Diabetic Retinopathy and 91% accuracy for breast cancer staging.
- 5Can differentiate between healthy and diseased individuals by learning disease-specific traits.
- 6Results will be presented at MICCAI Conference in Korea later this year.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.