A deep learning model leveraging SAM improved segmentation speed and matched radiologist performance in classifying ovarian lesions on MRI.
Key Details
- 1Researchers from Johns Hopkins developed an MRI-based, end-to-end DL pipeline incorporating Meta’s Segment Anything Model (SAM) and DenseNet-121.
- 2Integrated model reduced segmentation time by 4 minutes per lesion compared to manual segmentation.
- 3SAM achieved a Dice coefficient of 0.86 to 0.88 for lesion segmentation.
- 4DL model achieved an AUC of 0.85 internally and 0.79 externally, on par with radiologists’ AUC of 0.84 (p > 0.05).
- 5Training data included 534 lesions (internal) and 87 lesions (external) from the US and Taiwan.
Why It Matters

Source
AuntMinnie
Related News

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

AI Projected to Reshape Radiologist Workload But Not Eliminate Jobs
Stanford researchers predict AI could reduce radiologist hours by up to 49% over the next five years, though workforce size is likely to remain stable due to rising imaging demand.