A deep learning model leveraging SAM improved segmentation speed and matched radiologist performance in classifying ovarian lesions on MRI.
Key Details
- 1Researchers from Johns Hopkins developed an MRI-based, end-to-end DL pipeline incorporating Meta’s Segment Anything Model (SAM) and DenseNet-121.
- 2Integrated model reduced segmentation time by 4 minutes per lesion compared to manual segmentation.
- 3SAM achieved a Dice coefficient of 0.86 to 0.88 for lesion segmentation.
- 4DL model achieved an AUC of 0.85 internally and 0.79 externally, on par with radiologists’ AUC of 0.84 (p > 0.05).
- 5Training data included 534 lesions (internal) and 87 lesions (external) from the US and Taiwan.
Why It Matters
This study demonstrates that foundation AI models can efficiently streamlines lesion segmentation and classification with accuracy rivaling radiologists, suggesting a path toward more automated and collaborative clinical workflows in radiology.

Source
AuntMinnie
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.