A deep-learning model combining radiomics and clinicopathologic data with breast DCE-MRI improves prediction of complete pathological response after chemotherapy.
Key Details
- 1Study led by Chaowei Wu, PhD, at Cedars-Sinai Medical Center.
- 2Model integrates clinicopathologic data, shape radiomics, and retrospective pharmacokinetic quantification radiomics.
- 3Included MRI data from 1,073 breast cancer patients (2002–2016).
- 4Model achieved higher AUCs (up to 0.82 on external datasets) vs. conventional methods.
- 5Reported accuracy 69%, sensitivity 95%, specificity 59%.
- 6Early pCR prediction aids personalized treatment planning.
Why It Matters

Source
AuntMinnie
Related News

Women's Uncertainty About AI in Breast Imaging May Limit Acceptance
Many women remain unclear about the role of AI in breast imaging, creating hesitation toward its adoption.

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.

Head-to-Head Study Evaluates AI Accuracy in Fracture Detection on X-Ray
A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.