A deep-learning model combining radiomics and clinicopathologic data with breast DCE-MRI improves prediction of complete pathological response after chemotherapy.
Key Details
- 1Study led by Chaowei Wu, PhD, at Cedars-Sinai Medical Center.
- 2Model integrates clinicopathologic data, shape radiomics, and retrospective pharmacokinetic quantification radiomics.
- 3Included MRI data from 1,073 breast cancer patients (2002–2016).
- 4Model achieved higher AUCs (up to 0.82 on external datasets) vs. conventional methods.
- 5Reported accuracy 69%, sensitivity 95%, specificity 59%.
- 6Early pCR prediction aids personalized treatment planning.
Why It Matters

Source
AuntMinnie
Related News

Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.