A deep learning late-fusion model using sagittal T2 MRI predicts postpartum hemorrhage risk with high accuracy.
Key Details
- 1Study involved 581 pregnant women with suspected placenta accreta who underwent placental MRI from May 2018 to June 2024.
- 2Models compared: 2D and 3D deep learning, radiomics, clinical, and ensemble fusion models.
- 3Best performance: late-fusion deep learning model (validation set AUC: 0.90, sensitivity: 92%, specificity: 91%).
- 4MRI remains crucial for evaluating placental abnormalities; AI enhances risk prediction.
- 5Earlier identification enables tailored delivery planning and preparedness for hemorrhage risk.
Why It Matters
Effective AI-driven risk prediction could enable earlier intervention and resource planning for postpartum hemorrhage, a leading cause of maternal mortality. This study demonstrates the potential for integrating advanced imaging AI into women's imaging protocols to directly impact patient outcomes.

Source
AuntMinnie
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.