A deep learning late-fusion model using sagittal T2 MRI predicts postpartum hemorrhage risk with high accuracy.
Key Details
- 1Study involved 581 pregnant women with suspected placenta accreta who underwent placental MRI from May 2018 to June 2024.
- 2Models compared: 2D and 3D deep learning, radiomics, clinical, and ensemble fusion models.
- 3Best performance: late-fusion deep learning model (validation set AUC: 0.90, sensitivity: 92%, specificity: 91%).
- 4MRI remains crucial for evaluating placental abnormalities; AI enhances risk prediction.
- 5Earlier identification enables tailored delivery planning and preparedness for hemorrhage risk.
Why It Matters
Effective AI-driven risk prediction could enable earlier intervention and resource planning for postpartum hemorrhage, a leading cause of maternal mortality. This study demonstrates the potential for integrating advanced imaging AI into women's imaging protocols to directly impact patient outcomes.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

•AuntMinnie
Study: Patients Prefer AI in Radiology as Assistive, Not Standalone Tool
Survey finds patients support AI-assisted radiology but not AI-only interpretations.