A new deep-learning model accurately detects, segments, and quantifies breast arterial calcifications on mammography, aiding both cancer and cardiovascular risk screening.
Key Details
- 1The DL model uses a modified U-Net architecture tailored for BAC segmentation and quantification.
- 2In testing with mammograms from 369 women, the model achieved Dice scores of 0.90 (training) and 0.89 (validation) for segmentation.
- 3Classification accuracy for BAC detection was high, with F1 scores of 0.97 (validation) and 0.93 (training).
- 4Bland-Altman analysis validated the model's reliability for calcium quantification, with a mean difference of -0.98 mg in the training set.
- 5Manual annotation by seven radiologists enabled categorization into six BAC mass levels.
- 6The approach could transform mammography into a dual-purpose screening tool for breast cancer and cardiovascular disease risk.
Why It Matters

Source
AuntMinnie
Related News

Hybrid AI-Human Mammography Reading Cuts Workload Without Compromising Cancer Detection
A hybrid AI and radiologist reading strategy for screening mammography reduced radiologist workload by 38% without affecting recall or cancer detection rates.

AI as Second Reader Surpasses Radiologists in Breast Cancer Screening
AI used as a second reader on mammograms improves cancer detection rates compared to radiologists alone.

ChatGPT-4 Turbo Powers Postdeployment Monitoring of ICH Detection AI
Researchers found ChatGPT-4 Turbo could efficiently monitor the performance of Aidoc's ICH detection AI across real-world radiology practices.