Deep Learning Model Enables 3D Handheld Photoacoustic-Ultrasound Imaging Without Sensors

Pusan National University develops MoGLo-Net, an AI model that reconstructs 3D images from handheld 2D photoacoustic and ultrasound scans without external sensors.
Key Details
- 1MoGLo-Net uses deep learning to track handheld ultrasound transducer motion from tissue speckle data, eliminating need for external tracking hardware.
- 2Combines ResNet-based encoder and LSTM-based motion estimator for accurate motion tracking and 3D reconstruction.
- 3Validated using both proprietary and public datasets, outperforming state-of-the-art methods on all metrics.
- 4Successfully achieved 3D blood vessel reconstructions from combined ultrasound and photoacoustic data.
- 5Published June 13, 2025, in IEEE Transactions on Medical Imaging (DOI: 10.1109/TMI.2025.3579454).
- 6Innovation aims to make advanced 3D imaging safer, more accurate, and accessible without costly hardware.
Why It Matters

Source
EurekAlert
Related News

AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.