Deep Learning Model Enables 3D Handheld Photoacoustic-Ultrasound Imaging Without Sensors

Pusan National University develops MoGLo-Net, an AI model that reconstructs 3D images from handheld 2D photoacoustic and ultrasound scans without external sensors.
Key Details
- 1MoGLo-Net uses deep learning to track handheld ultrasound transducer motion from tissue speckle data, eliminating need for external tracking hardware.
- 2Combines ResNet-based encoder and LSTM-based motion estimator for accurate motion tracking and 3D reconstruction.
- 3Validated using both proprietary and public datasets, outperforming state-of-the-art methods on all metrics.
- 4Successfully achieved 3D blood vessel reconstructions from combined ultrasound and photoacoustic data.
- 5Published June 13, 2025, in IEEE Transactions on Medical Imaging (DOI: 10.1109/TMI.2025.3579454).
- 6Innovation aims to make advanced 3D imaging safer, more accurate, and accessible without costly hardware.
Why It Matters

Source
EurekAlert
Related News

AI-Enabled Nanoplatforms Combine Ferroptosis, Immunotherapy, and Imaging for Cancer
A groundbreaking review highlights how advanced nanoplatforms can synergistically integrate ferroptosis, immunotherapy, and multimodal imaging to optimize cancer therapy.

AI Repurposes Routine CT Scans for Osteoporosis Detection
AI algorithms can extract bone density data from routine CT scans to identify osteoporosis, enabling opportunistic screening.

AI Outperforms Radiologists in Detecting Hidden Airway Objects on Chest CT
Southampton researchers developed an AI that surpassed radiologists in detecting hard-to-see airway obstructions on chest CT scans.