A deep learning algorithm accurately quantifies coronary artery calcium (CAC) on routine nongated chest CT scans, offering significant potential for opportunistic cardiovascular risk assessment.
Key Details
- 1The AI-CAC algorithm analyzes noncontrast, nongated chest CTs, typically not used for CAC scoring.
- 2Study used data from 98 VA medical centers, comparing results from 795 patients with paired gated CTs.
- 3AI-CAC had 89.4% accuracy at detecting CAC and 87.3% accuracy at categorizing CAC above or below the score of 100.
- 4CAC scores above 400 indicated a 3.49-fold higher risk of 10-year all-cause mortality compared to a score of 0.
- 5Nearly all patients flagged by the model for high CAC would benefit from lipid-lowering therapy per cardiologist review.
- 6Opportunistic screening tested on 8,052 low-dose CT scans and highlights value for population health.
Why It Matters
This research paves the way for leveraging existing routine CT scans to opportunistically assess heart disease risk, enabling earlier intervention and proactive patient management. Broad AI adoption could convert millions of non-dedicated chest CT exams into valuable tools for cardiovascular prevention.

Source
AuntMinnie
Related News

•Radiology Business
Stanford Pilots AI Tool for Explaining Imaging Results to Providers
Stanford Health Care reports primary care providers find value in AI tools generating imaging result explanations.

•AI in Healthcare
Literature Review Highlights Gaps in Economic Evaluation of Healthcare AI
A Finnish review finds significant gaps in economic evaluation reporting of AI technologies in Western healthcare.

•AI in Healthcare
Economic Evaluations of AI in Healthcare Face Major Gaps
A Finnish review finds significant deficiencies in how studies evaluate and report the economic impact of healthcare AI.