A deep learning algorithm accurately quantifies coronary artery calcium (CAC) on routine nongated chest CT scans, offering significant potential for opportunistic cardiovascular risk assessment.
Key Details
- 1The AI-CAC algorithm analyzes noncontrast, nongated chest CTs, typically not used for CAC scoring.
- 2Study used data from 98 VA medical centers, comparing results from 795 patients with paired gated CTs.
- 3AI-CAC had 89.4% accuracy at detecting CAC and 87.3% accuracy at categorizing CAC above or below the score of 100.
- 4CAC scores above 400 indicated a 3.49-fold higher risk of 10-year all-cause mortality compared to a score of 0.
- 5Nearly all patients flagged by the model for high CAC would benefit from lipid-lowering therapy per cardiologist review.
- 6Opportunistic screening tested on 8,052 low-dose CT scans and highlights value for population health.
Why It Matters

Source
AuntMinnie
Related News

AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

US Executive Order and HHS Strategy Set AI Policy Directions for Healthcare
The White House executive order and new HHS strategy shift US policy towards unified AI standards and expanded adoption in healthcare.