A deep learning algorithm accurately quantifies coronary artery calcium (CAC) on routine nongated chest CT scans, offering significant potential for opportunistic cardiovascular risk assessment.
Key Details
- 1The AI-CAC algorithm analyzes noncontrast, nongated chest CTs, typically not used for CAC scoring.
- 2Study used data from 98 VA medical centers, comparing results from 795 patients with paired gated CTs.
- 3AI-CAC had 89.4% accuracy at detecting CAC and 87.3% accuracy at categorizing CAC above or below the score of 100.
- 4CAC scores above 400 indicated a 3.49-fold higher risk of 10-year all-cause mortality compared to a score of 0.
- 5Nearly all patients flagged by the model for high CAC would benefit from lipid-lowering therapy per cardiologist review.
- 6Opportunistic screening tested on 8,052 low-dose CT scans and highlights value for population health.
Why It Matters

Source
AuntMinnie
Related News

Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.