A deep learning algorithm accurately quantifies coronary artery calcium (CAC) on routine nongated chest CT scans, offering significant potential for opportunistic cardiovascular risk assessment.
Key Details
- 1The AI-CAC algorithm analyzes noncontrast, nongated chest CTs, typically not used for CAC scoring.
- 2Study used data from 98 VA medical centers, comparing results from 795 patients with paired gated CTs.
- 3AI-CAC had 89.4% accuracy at detecting CAC and 87.3% accuracy at categorizing CAC above or below the score of 100.
- 4CAC scores above 400 indicated a 3.49-fold higher risk of 10-year all-cause mortality compared to a score of 0.
- 5Nearly all patients flagged by the model for high CAC would benefit from lipid-lowering therapy per cardiologist review.
- 6Opportunistic screening tested on 8,052 low-dose CT scans and highlights value for population health.
Why It Matters

Source
AuntMinnie
Related News

Women's Uncertainty About AI in Breast Imaging May Limit Acceptance
Many women remain unclear about the role of AI in breast imaging, creating hesitation toward its adoption.

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.

Harrison.ai Receives FDA Breakthrough Status for Imaging AI Device
Harrison.ai has been awarded three FDA breakthrough device designations for its imaging AI solutions, including a tool for obstructive hydrocephalus triage.