Research finds insufficient data transparency for FDA-cleared AI devices in Alzheimer’s imaging, raising bias and generalizability concerns.
Key Details
- 124 AI/ML-based devices for Alzheimer's disease and related dementias (ADRD) were FDA-authorized between January 2015 and December 2024.
- 291.7% (22/24) were cleared via the 510(k) pathway; 8.3% (2/24) through de novo classification.
- 3For 12 devices, there was no info on training or validation data in FDA summaries or peer-reviewed articles.
- 4Only 2 FDA summaries (8.3%) included external validation data; 10 peer-reviewed articles (41.7%) provided such data.
- 5Reporting of disease status, age, sex, race, and ethnicity was rare across most devices; demographic transparency was lacking.
- 6Most devices (21) were reviewed by radiology panels and primarily involved MRI and PET imaging.
Why It Matters
Transparent disclosure of training and validation data, especially demographic details, is vital for assessing bias and clinical accuracy in AI-based imaging devices. Without sufficient data transparency, there is uncertainty about the generalizability and safety of these AI tools in real-world, diverse patient populations.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

•AuntMinnie
Study: Patients Prefer AI in Radiology as Assistive, Not Standalone Tool
Survey finds patients support AI-assisted radiology but not AI-only interpretations.