AI and radiologists differ in the types and patient characteristics of false-positive findings in digital breast tomosynthesis breast cancer screening.
Key Details
- 1Study included 2,977 women (average age 58) and 3,183 DBT exams (2013–2017) from UCLA.
- 2AI-only false positives mostly flagged benign calcifications (40%), while radiologists mostly flagged masses (47%).
- 3AI and radiologists had nearly identical false-positive rates: 9.7% (AI) vs. 9.5% (radiologists).
- 4Of 541 false-positive exams, 43% were AI-only, 44% were radiologist-only, and 13% were flagged by both.
- 5AI-only false positives occurred in older women (average 60 years), less often with dense breasts (24%), and more often with prior surgical history (37%).
- 6Concordant (AI-radiologist) flagged findings needing biopsy were high-risk in 44% of cases.
Why It Matters
Identifying how AI and radiologists differ in false-positive findings can inform the design of AI tools to improve screening specificity and reduce unnecessary recalls, directly impacting efficiency and patient care in breast imaging.

Source
AuntMinnie
Related News

•Radiology Business
RadNet and Desert Oasis Launch No-Cost AI Breast Cancer Screening
RadNet partners with Desert Oasis Healthcare to provide AI-enhanced breast cancer detection at no extra cost.

•AuntMinnie
LLMs Demonstrate Strong Potential in Interventional Radiology Patient Education
DeepSeek-V3 and ChatGPT-4o excelled in accurately answering patient questions about interventional radiology procedures, suggesting LLMs' growing role in clinical communication.

•Radiology Business
Women's Uncertainty About AI in Breast Imaging May Limit Acceptance
Many women remain unclear about the role of AI in breast imaging, creating hesitation toward its adoption.