AI misses 14% of invasive breast cancers on mammography, with luminal cancers and dense tissue posing significant challenges.
Key Details
- 1Study analyzed 1,097 breast cancers from 1,082 women using Lunit Insight MMG AI between 2014–2020.
- 2AI missed 154 cancers (14%), often in younger women with smaller (<2 cm), lower-grade tumors and dense breasts.
- 3Missed cancers were more likely luminal subtype (false-negative rate 17.2%), compared to HER2-enriched (9%) and triple-negative (14.5%).
- 4Major reasons for AI misses included dense breast tissue (n=56), nonmammary zone location (n=22), architectural distortion (n=12), and amorphous calcifications (n=5).
- 561.7% of AI-missed cancers were deemed 'actionable' on further review by radiologists.
Why It Matters
Understanding which cancer features are often overlooked by AI tools enables radiologists to better interpret AI results, reducing missed diagnoses. These insights highlight the continued importance of human expertise in mammography, especially for high-risk groups like women with dense breast tissue.

Source
AuntMinnie
Related News

•AI in Healthcare
Literature Review Highlights Gaps in Economic Evaluation of Healthcare AI
A Finnish review finds significant gaps in economic evaluation reporting of AI technologies in Western healthcare.

•AI in Healthcare
Economic Evaluations of AI in Healthcare Face Major Gaps
A Finnish review finds significant deficiencies in how studies evaluate and report the economic impact of healthcare AI.

•Health Imaging
AI Platform Triples Functional Independence in UK Stroke Patients
AI brain imaging software deployed by NHS has significantly improved stroke outcomes and functional independence rates in England.