AI misses 14% of invasive breast cancers on mammography, with luminal cancers and dense tissue posing significant challenges.
Key Details
- 1Study analyzed 1,097 breast cancers from 1,082 women using Lunit Insight MMG AI between 2014–2020.
- 2AI missed 154 cancers (14%), often in younger women with smaller (<2 cm), lower-grade tumors and dense breasts.
- 3Missed cancers were more likely luminal subtype (false-negative rate 17.2%), compared to HER2-enriched (9%) and triple-negative (14.5%).
- 4Major reasons for AI misses included dense breast tissue (n=56), nonmammary zone location (n=22), architectural distortion (n=12), and amorphous calcifications (n=5).
- 561.7% of AI-missed cancers were deemed 'actionable' on further review by radiologists.
Why It Matters
Understanding which cancer features are often overlooked by AI tools enables radiologists to better interpret AI results, reducing missed diagnoses. These insights highlight the continued importance of human expertise in mammography, especially for high-risk groups like women with dense breast tissue.

Source
AuntMinnie
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.