
Researchers explore using ChatGPT to monitor AI model drift for radiology applications.
Key Details
- 1Radiology AI tools need ongoing monitoring to ensure clinical reliability.
- 2AI drift causes model performance to degrade over time, raising patient safety concerns.
- 3Traditional drift detection requiring real-time feedback is often impractical in healthcare.
- 4Researchers from Baylor College of Medicine suggest ChatGPT could analyze radiology reports for drift indicators.
- 5Organizations face staffing and workload challenges that limit manual oversight of AI models.
Why It Matters

Source
Health Imaging
Related News

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.

AI Model Uses CT Scans to Reveal Biomarker for Chronic Stress
Researchers developed an AI model to measure chronic stress using adrenal gland volume on routine CT scans.