Thomas Jefferson University researchers developed an AutoML model that distinguishes pituitary macroadenomas from parasellar meningiomas on MRI with over 97% accuracy.
Key Details
- 1AutoML model trained to classify pituitary macroadenomas vs. parasellar meningiomas on preoperative MRI.
- 2Achieved 97.55% overall accuracy, with sensitivities of 97% (macroadenoma) and 98.41% (meningioma), and specificities of 98.96% and 95.53%, respectively.
- 3External validation conducted on 959 additional MRI images.
- 4Model allows different confidence thresholds, aiding both community screening and tertiary centers.
- 5First reported use of AutoML for this specific neuro-oncology imaging task.
- 6The study published in Otolaryngology–Head and Neck Surgery (Dec 2025); presented at AAO-HNSF 2025.
Why It Matters

Source
EurekAlert
Related News

AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.