
Recent research evaluates improvements in large language models for radiology tasks, revealing both progress and ongoing limitations.
Key Details
- 1LLMs like ChatGPT have been used since late 2022 for radiology tasks such as report generation and patient communication.
- 2Multiple tech companies have released LLMs tested specifically for radiology use cases.
- 3Performance of LLMs remains variable, requiring significant medical oversight when deployed in clinical contexts.
- 4Experts from UCLA published new findings in Academic Radiology assessing contemporary LLM performance for radiology tasks.
- 5Continuous evaluation is needed to ensure LLMs provide accurate and reliable information in medical scenarios.
Why It Matters

Source
Health Imaging
Related News

AI Automates Head CT Reformatting, Improving Efficiency and Consistency
Researchers at UC Irvine used deep learning to automate head CT reformatting, improving workflow standardization and efficiency.

Google's Gemini Outperforms Providers in Communicating IR Procedures
Large language models like Google's Gemini demonstrate higher accuracy and greater empathy than human providers when answering patient questions about interventional radiology.

Comparing False-Positive Findings: AI vs. Radiologists in DBT Screening
AI and radiologists differ in the types and patient characteristics of false-positive findings in digital breast tomosynthesis breast cancer screening.