
Less than 30% of FDA-cleared AI devices shared key safety and adverse event data before approval, raising regulatory concerns.
Key Details
- 1A new analysis reviewed FDA approval and recall databases for all AI/ML devices cleared from 1995 to July 2023.
- 2Of 691 devices analyzed, 531 targeted radiology applications.
- 3Fewer than 30% of devices provided data on safety, efficacy, or adverse events prior to approval.
- 4No predefined efficacy or safety reporting standards currently exist for AI/ML devices in the U.S., unlike with pharmaceuticals.
- 5The findings highlight a regulatory gap and call for stricter testing and dedicated approval pathways for AI/ML-based medical devices.
Why It Matters

Source
Radiology Business
Related News

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

FDA Eases Path for AI in Clinical Decision Support and Healthcare Innovation
FDA publishes new guidance to promote innovation in general wellness and clinical decision support, impacting medical AI including radiology.

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.