
Less than 30% of FDA-cleared AI devices shared key safety and adverse event data before approval, raising regulatory concerns.
Key Details
- 1A new analysis reviewed FDA approval and recall databases for all AI/ML devices cleared from 1995 to July 2023.
- 2Of 691 devices analyzed, 531 targeted radiology applications.
- 3Fewer than 30% of devices provided data on safety, efficacy, or adverse events prior to approval.
- 4No predefined efficacy or safety reporting standards currently exist for AI/ML devices in the U.S., unlike with pharmaceuticals.
- 5The findings highlight a regulatory gap and call for stricter testing and dedicated approval pathways for AI/ML-based medical devices.
Why It Matters
This research underscores a major gap in regulatory standards and transparency for AI devices in radiology, potentially impacting patient safety and trust. Addressing these concerns could lead to more robust evidence and safer adoption of AI in clinical imaging practice.

Source
Radiology Business
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.