A new AI algorithm leveraging cardiac MRI and health data significantly outperforms current clinical guidelines in predicting risk of sudden cardiac arrest in hypertrophic cardiomyopathy patients.
Key Details
- 1The AI model, MAARS, uses cardiac MRI, electronic health records, and echocardiogram data.
- 2Developed and validated on cohorts of 553 and 284 patients, respectively.
- 3MAARS achieved 89% overall accuracy and 93% accuracy for high-risk patients aged 40-60.
- 4Outperformed traditional clinical guidelines (approx. 50% accuracy) and other tools in sensitivity, specificity, and AUROC (0.89 for MAARS).
- 5Could reduce unnecessary implantable defibrillators and more precisely identify at-risk patients.
Why It Matters

Source
AuntMinnie
Related News

AI Triage Cuts CT Report Turnaround for Pulmonary Embolism—Daytime Only
FDA-backed study finds AI triage tools reduce radiology CT report turnaround times for pulmonary embolism during peak hours.

AI Uses Mammograms to Predict Women’s Cardiovascular Disease Risk
AI algorithms can analyze mammograms to predict cardiovascular disease risk, expanding the utility of breast imaging.

Most FDA-Cleared AI Devices Lack Pre-Approval Safety Data, Study Finds
A new study finds fewer than 30% of FDA-cleared AI medical devices reported key safety or adverse event data before approval.