A new AI algorithm leveraging cardiac MRI and health data significantly outperforms current clinical guidelines in predicting risk of sudden cardiac arrest in hypertrophic cardiomyopathy patients.
Key Details
- 1The AI model, MAARS, uses cardiac MRI, electronic health records, and echocardiogram data.
- 2Developed and validated on cohorts of 553 and 284 patients, respectively.
- 3MAARS achieved 89% overall accuracy and 93% accuracy for high-risk patients aged 40-60.
- 4Outperformed traditional clinical guidelines (approx. 50% accuracy) and other tools in sensitivity, specificity, and AUROC (0.89 for MAARS).
- 5Could reduce unnecessary implantable defibrillators and more precisely identify at-risk patients.
Why It Matters
This development demonstrates the power of multimodal AI to improve risk stratification in cardiac imaging, potentially leading to better patient outcomes and more tailored medical interventions in radiology and cardiology practice.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

•AuntMinnie
Study: Patients Prefer AI in Radiology as Assistive, Not Standalone Tool
Survey finds patients support AI-assisted radiology but not AI-only interpretations.