A deep learning AI model based on mammographic features can predict cardiovascular risk in women with accuracy comparable to traditional risk scores.
Key Details
- 1Researchers from the George Institute for Global Health developed a deep-learning algorithm using mammogram images and patient age.
- 2The model was trained on 49,196 women with a median follow-up of 8.8 years, 3,392 of whom experienced a major cardiovascular event.
- 3The AI algorithm (DeepSurv) achieved a concordance index of 0.72; traditional risk models range from 0.73 to 0.79.
- 4Combining mammogram radiomics with clinical data increased the concordance index to 0.75.
- 5The model is designed for integration into routine breast cancer screening to provide additional cardiovascular risk information.
Why It Matters
This work demonstrates the potential for mammography-based AI to serve as a dual-purpose screening tool, improving both cancer and cardiovascular disease prevention in women by leveraging existing imaging data. If implemented, it could enhance patient care without adding screening burden or workload.

Source
AuntMinnie
Related News

•Radiology Business
Rayus Radiology Launches $40 AI Mammography Screenings in Washington
Rayus Radiology is introducing a $40 AI-enhanced mammography add-on service at clinics in Washington state.

•AuntMinnie
AI Tool Mirai Shows Robust Performance for Interval Breast Cancer Detection
The Mirai AI model significantly improves detection of interval breast cancers in negative screening mammograms.

•Radiology Business
AI Tool Predicts Interval Breast Cancer Risk from Negative Mammograms
AI can predict interval breast cancer risk up to three years after a negative mammogram.