
Researchers developed a deep learning system using eye-tracking data to enhance AI-powered biopsy image interpretation.
Key Details
- 1The Pathology Expertise Acquisition Network (PEAN) was trained using expert pathologists’ eye movements while reviewing 5,881 skin lesion slides.
- 2PEAN-C achieved 96.3% accuracy and 0.992 AUC on internal data and 93.0% accuracy and 0.984 AUC on external test data, exceeding the next best AI model by 5.5%.
- 3Using pathologist gaze data, the model identifies relevant tissue regions with much less manual labeling burden than traditional pixel-wise annotation.
- 4Integrating PEAN-generated data with other models improved classification accuracy and AUC, statistically significant by paired t-test (p = 0.0053 and 0.0161).
- 5The aim is to scale to personalized diagnosis and multimodal predictive models, leveraging low-cost data collection from expertise monitoring.
Why It Matters
This study demonstrates a scalable, low-burden way to transfer human diagnostic expertise into AI tools, potentially enhancing accuracy and acceptance in digital pathology and, by extension, inspiring innovations in radiology imaging AI with analogous annotation challenges.

Source
EurekAlert
Related News

•EurekAlert
AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

•EurekAlert
AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

•EurekAlert
AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.