
Researchers developed a deep learning system using eye-tracking data to enhance AI-powered biopsy image interpretation.
Key Details
- 1The Pathology Expertise Acquisition Network (PEAN) was trained using expert pathologists’ eye movements while reviewing 5,881 skin lesion slides.
- 2PEAN-C achieved 96.3% accuracy and 0.992 AUC on internal data and 93.0% accuracy and 0.984 AUC on external test data, exceeding the next best AI model by 5.5%.
- 3Using pathologist gaze data, the model identifies relevant tissue regions with much less manual labeling burden than traditional pixel-wise annotation.
- 4Integrating PEAN-generated data with other models improved classification accuracy and AUC, statistically significant by paired t-test (p = 0.0053 and 0.0161).
- 5The aim is to scale to personalized diagnosis and multimodal predictive models, leveraging low-cost data collection from expertise monitoring.
Why It Matters
This study demonstrates a scalable, low-burden way to transfer human diagnostic expertise into AI tools, potentially enhancing accuracy and acceptance in digital pathology and, by extension, inspiring innovations in radiology imaging AI with analogous annotation challenges.

Source
EurekAlert
Related News

•EurekAlert
Major Study Reveals Barriers to Implementing AI Chest Diagnostics in NHS Hospitals
A UCL-led study identifies significant challenges in deploying AI tools for chest diagnostics across NHS hospitals in England.

•EurekAlert
AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.

•EurekAlert
AI-Enabled Hydrogel Patch Provides Long-Term High-Fidelity EEG and Attention Monitoring
Researchers unveil a reusable hydrogel patch with machine learning capabilities for high-fidelity EEG recording and attention assessment.