The Mirai AI model significantly improves detection of interval breast cancers in negative screening mammograms.
Key Details
- 1Mirai risk model analyzed 134,217 screening mammograms, including 524 interval cancers.
- 2Top 20% risk group by Mirai captured 42.4% of interval cancers, corresponding to 1.7 additional detections per 1,000 exams.
- 3AUC values for interval cancer prediction ranged from 0.67 to 0.72 across time, age, and breast density subgroups.
- 4No significant performance variation across different age groups or breast densities was observed.
- 5Mirai has been validated on nearly 2 million mammograms across 21 countries.
- 6Editorial comments highlight progress but note limitations since interval cancer detection did not surpass 50%.
Why It Matters
Interval cancers are a challenge in breast screening, often missed during routine exams and harder to detect. AI-driven risk models like Mirai offer a promising path to personalized screening strategies, potentially catching cancers earlier and improving patient outcomes.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enhancement Dramatically Improves Quality of Suboptimal Chest CTs
AI-powered image enhancement significantly boosts the diagnostic quality of suboptimal chest CT and CTPA studies.

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.