An AI algorithm enhanced radiologists' detection of incidental pulmonary emboli (IPE) on routine contrast-enhanced CT studies.
Key Details
- 1Study assessed 14,453 contrast-enhanced outpatient CT chest/abdomen/pelvis exams for IPEs using Aidoc's AI algorithm.
- 2AI detected 224 IPE cases, 36 of which radiologists missed; these were mostly small and distal emboli.
- 3AI missed 30 IPEs that radiologists found, most being small, with one large central embolus missed.
- 4Radiologist re-review of 1,400 negative cases found 8 additional IPEs missed initially.
- 5Specificity for identifying IPE: 65.1% for radiologists, 66.9% for AI, and 75.8% when combined.
- 6AI showed similar sensitivity as radiologists but a lower positive predictive value; false positive rate noted.
Why It Matters

Source
AuntMinnie
Related News

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.

Harrison.ai Receives FDA Breakthrough Status for Imaging AI Device
Harrison.ai has been awarded three FDA breakthrough device designations for its imaging AI solutions, including a tool for obstructive hydrocephalus triage.

Head-to-Head Study Evaluates AI Accuracy in Fracture Detection on X-Ray
A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.