An AI algorithm enhanced radiologists' detection of incidental pulmonary emboli (IPE) on routine contrast-enhanced CT studies.
Key Details
- 1Study assessed 14,453 contrast-enhanced outpatient CT chest/abdomen/pelvis exams for IPEs using Aidoc's AI algorithm.
- 2AI detected 224 IPE cases, 36 of which radiologists missed; these were mostly small and distal emboli.
- 3AI missed 30 IPEs that radiologists found, most being small, with one large central embolus missed.
- 4Radiologist re-review of 1,400 negative cases found 8 additional IPEs missed initially.
- 5Specificity for identifying IPE: 65.1% for radiologists, 66.9% for AI, and 75.8% when combined.
- 6AI showed similar sensitivity as radiologists but a lower positive predictive value; false positive rate noted.
Why It Matters
Automated AI second reads can improve detection of incidental findings on routine CT exams, suggesting a synergistic workflow where AI and human expertise together outperform either alone. This has potential clinical impact for patient outcomes and radiology practice, though current AI tools require continued human oversight.

Source
AuntMinnie
Related News

•Radiology Business
Cigna Expands Nationwide Coverage for CT Imaging AI Tools
Cigna will reimburse for CT-based plaque analysis AI software for millions of members nationwide.

•AuntMinnie
AI for Breast Cancer Screening Not Cost-Effective, Study Finds
AI-assisted breast cancer screening showed minor clinical benefits over DBT alone but was not cost-effective at standard willingness-to-pay thresholds.

•AuntMinnie
AI Model Produces Clinically Acceptable Chest X-Ray Reports
A South Korean study finds that AI-generated chest x-ray reports are nearly as clinically acceptable as radiologist-written reports under standard criteria.