An AI algorithm enhanced radiologists' detection of incidental pulmonary emboli (IPE) on routine contrast-enhanced CT studies.
Key Details
- 1Study assessed 14,453 contrast-enhanced outpatient CT chest/abdomen/pelvis exams for IPEs using Aidoc's AI algorithm.
- 2AI detected 224 IPE cases, 36 of which radiologists missed; these were mostly small and distal emboli.
- 3AI missed 30 IPEs that radiologists found, most being small, with one large central embolus missed.
- 4Radiologist re-review of 1,400 negative cases found 8 additional IPEs missed initially.
- 5Specificity for identifying IPE: 65.1% for radiologists, 66.9% for AI, and 75.8% when combined.
- 6AI showed similar sensitivity as radiologists but a lower positive predictive value; false positive rate noted.
Why It Matters
Automated AI second reads can improve detection of incidental findings on routine CT exams, suggesting a synergistic workflow where AI and human expertise together outperform either alone. This has potential clinical impact for patient outcomes and radiology practice, though current AI tools require continued human oversight.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

•HealthExec
US Executive Order and HHS Strategy Set AI Policy Directions for Healthcare
The White House executive order and new HHS strategy shift US policy towards unified AI standards and expanded adoption in healthcare.