
A commercial AI system can identify up to 33% of interval breast cancers missed by radiologists on digital breast tomosynthesis exams.
Key Details
- 1Study published in Radiology tested AI on digital breast tomosynthesis (DBT) exams preceding confirmed interval cancer diagnoses.
- 2The AI algorithm (Lunit INSIGHT DBT v1.1) flagged up to one-third of interval cancers missed by radiologists.
- 3Interval breast cancers are often more aggressive and have worse prognoses than screen-detected cancers.
- 4Nearly 12 years of retrospective DBT data (Feb 2011–Jun 2023) were analyzed.
- 5Algorithm scored lesions; those over 10 marked as positive, and radiologist review correlated AI findings with actual cancer sites.
Why It Matters
Interval cancers are frequently aggressive and linked with higher morbidity and mortality due to later detection. AI's ability to identify a significant portion of these previously missed cancers suggests potential for earlier intervention and improved patient outcomes in breast imaging.

Source
Health Imaging
Related News

•AuntMinnie
Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

•Radiology Business
Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

•Radiology Business
FDA Clears Multi-Disease AI Screening Platform for CT Imaging
HeartLung Corporation's AI-CVD platform receives FDA clearance to detect multiple diseases from a single CT scan.