
A commercial AI system can identify up to 33% of interval breast cancers missed by radiologists on digital breast tomosynthesis exams.
Key Details
- 1Study published in Radiology tested AI on digital breast tomosynthesis (DBT) exams preceding confirmed interval cancer diagnoses.
- 2The AI algorithm (Lunit INSIGHT DBT v1.1) flagged up to one-third of interval cancers missed by radiologists.
- 3Interval breast cancers are often more aggressive and have worse prognoses than screen-detected cancers.
- 4Nearly 12 years of retrospective DBT data (Feb 2011–Jun 2023) were analyzed.
- 5Algorithm scored lesions; those over 10 marked as positive, and radiologist review correlated AI findings with actual cancer sites.
Why It Matters

Source
Health Imaging
Related News

Hybrid AI Approach Cuts Mammography Workload by 38%
A Dutch research team demonstrated that a 'hybrid' AI strategy can reduce radiologist workload in mammography screening by nearly 40% without affecting performance.

Habitat AI Model Improves Risk Stratification of Lung Nodules on LDCT
A 'habitat' AI model outperforms standard 2D approaches in stratifying lung adenocarcinoma risk in subsolid nodules on low-dose CT scans.

Former US Surgeon General Jerome Adams Joins Eko as Medical Advisor
Former US Surgeon General Jerome Adams has joined Eko Health as a distinguished medical advisor to support AI-powered cardiac and pulmonary detection technologies.