
A commercial AI system can identify up to 33% of interval breast cancers missed by radiologists on digital breast tomosynthesis exams.
Key Details
- 1Study published in Radiology tested AI on digital breast tomosynthesis (DBT) exams preceding confirmed interval cancer diagnoses.
- 2The AI algorithm (Lunit INSIGHT DBT v1.1) flagged up to one-third of interval cancers missed by radiologists.
- 3Interval breast cancers are often more aggressive and have worse prognoses than screen-detected cancers.
- 4Nearly 12 years of retrospective DBT data (Feb 2011–Jun 2023) were analyzed.
- 5Algorithm scored lesions; those over 10 marked as positive, and radiologist review correlated AI findings with actual cancer sites.
Why It Matters

Source
Health Imaging
Related News

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.

AI Model Uses CT Scans to Reveal Biomarker for Chronic Stress
Researchers developed an AI model to measure chronic stress using adrenal gland volume on routine CT scans.