Researchers introduce CoRaX, an AI system that uses eye gaze and radiology report data to address perceptual errors in chest x-ray readings.
Key Details
- 1CoRaX combines eye gaze data, chest x-ray images, and radiology reports for collaborative error detection.
- 2Developed by the University of Houston, the system acts as a 'virtual second reader' and provides targeted diagnostic recommendations.
- 3Evaluation on simulated datasets showed CoRaX corrected 21.3% and 34.6% of perceptual errors, depending on the scenario.
- 4Diagnostic aid was provided in 85.7% and 78.4% of interactions in two different datasets.
- 5The system performed particularly well for missed cases of cardiomegaly.
- 6Future directions include real-world validation and possible integration of more advanced classifiers.
Why It Matters

Source
AuntMinnie
Related News

Google's Gemini Outperforms Providers in Communicating IR Procedures
Large language models like Google's Gemini demonstrate higher accuracy and greater empathy than human providers when answering patient questions about interventional radiology.

Comparing False-Positive Findings: AI vs. Radiologists in DBT Screening
AI and radiologists differ in the types and patient characteristics of false-positive findings in digital breast tomosynthesis breast cancer screening.

AI Triage Cuts CT Report Turnaround for Pulmonary Embolism—Daytime Only
FDA-backed study finds AI triage tools reduce radiology CT report turnaround times for pulmonary embolism during peak hours.