
AI demonstrates higher accuracy than radiologists in predicting lung cancer treatment response from imaging.
Key Details
- 1Study is a meta-analysis of 11 retrospective studies comparing AI and radiologists for treatment response prediction.
- 2AI achieved a sensitivity of 0.90, specificity of 0.80, and accuracy of 0.90.
- 3Risk difference favored AI by 0.06 for sensitivity and 0.04 for specificity.
- 4Outcomes were modality-dependent, impacting the magnitude of AI's advantage.
Why It Matters
Improved prediction of treatment response could lead to more effective, personalized cancer care and alter clinical decision workflows. The results support the increasing role of AI in enhancing the accuracy of imaging-based assessments in oncology.

Source
Health Imaging
Related News

•Radiology Business
RadNet Study: AI Boosts Breast Cancer Detection in Largest-Ever Real-World Analysis
A massive real-world study by RadNet shows AI-assisted mammography increased breast cancer detection by 21.6%.

•AuntMinnie
Multimodal MRI Radiomics Model Predicts Long-Term Survival in Breast Cancer
A multimodal MRI radiomics and deep learning model outperformed traditional models in predicting 5- and 7-year survival for breast cancer patients receiving neoadjuvant chemotherapy.

•AuntMinnie
AI Predicts 10-Year Mortality and Hip Fracture Risk from DEXA Scans
A self-supervised AI model predicts 10-year mortality and hip fractures using only DEXA scans.