
AI demonstrates higher accuracy than radiologists in predicting lung cancer treatment response from imaging.
Key Details
- 1Study is a meta-analysis of 11 retrospective studies comparing AI and radiologists for treatment response prediction.
- 2AI achieved a sensitivity of 0.90, specificity of 0.80, and accuracy of 0.90.
- 3Risk difference favored AI by 0.06 for sensitivity and 0.04 for specificity.
- 4Outcomes were modality-dependent, impacting the magnitude of AI's advantage.
Why It Matters
Improved prediction of treatment response could lead to more effective, personalized cancer care and alter clinical decision workflows. The results support the increasing role of AI in enhancing the accuracy of imaging-based assessments in oncology.

Source
Health Imaging
Related News

•AuntMinnie
AI Enhancement Dramatically Improves Quality of Suboptimal Chest CTs
AI-powered image enhancement significantly boosts the diagnostic quality of suboptimal chest CT and CTPA studies.

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.