
EPFL researchers created an AI-driven microscopy system that predicts and analyzes misfolded protein aggregation in real time.
Key Details
- 1Developed a self-driving imaging system combining multiple microscopy methods and deep learning.
- 2System predicts and detects protein aggregation—a hallmark of neurodegenerative diseases—in living cells.
- 3Uses label-free microscopy to minimize sample alteration and maximize imaging efficiency.
- 4Upon aggregation detection, system triggers Brillouin microscope to analyze biomechanical properties of aggregates.
- 5Aggregation onset detection achieved 91% accuracy using a specialized deep learning algorithm.
- 6Published in Nature Communications, with potential impact on drug discovery and precision medicine.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Prediction of Knee Osteoarthritis Progression Using MRI and Biomarkers
A new AI-assisted model that combines MRI, biochemical, and clinical data improves predictions of worsening knee osteoarthritis.

AI Model Predicts Multiple Genetic Markers from Colorectal Pathology Slides
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.

Photonic Chip Enables Versatile Neural Networks for Imaging and Speech AI
Chinese scientists have developed a reconfigurable integrated photonic chip capable of running diverse neural networks, including those for image and speech processing, with high efficiency.