
Researchers at UVA developed an AI imaging tool using PET/MR to distinguish treatment effects from tumor progression in glioblastoma patients.
Key Details
- 1AI tool analyzes PET/MR imaging findings in glioblastoma cases.
- 2Distinguishes between tissue changes due to treatment vs. tumor progression.
- 3Current monitoring approaches often require a waiting period of 3+ months.
- 4Faster distinction could enable earlier treatment modification for recurrence.
- 5Method developed by a University of Virginia team.
Why It Matters
Improved differentiation between treatment effects and recurrence could allow clinicians to adjust therapies more quickly, potentially improving outcomes for a highly aggressive brain cancer. This underlines the growing significance of AI-assisted multi-modal imaging in oncology workflows.

Source
Health Imaging
Related News

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

•AuntMinnie
Study: Patients Prefer AI in Radiology as Assistive, Not Standalone Tool
Survey finds patients support AI-assisted radiology but not AI-only interpretations.