
Researchers at UVA developed an AI imaging tool using PET/MR to distinguish treatment effects from tumor progression in glioblastoma patients.
Key Details
- 1AI tool analyzes PET/MR imaging findings in glioblastoma cases.
- 2Distinguishes between tissue changes due to treatment vs. tumor progression.
- 3Current monitoring approaches often require a waiting period of 3+ months.
- 4Faster distinction could enable earlier treatment modification for recurrence.
- 5Method developed by a University of Virginia team.
Why It Matters
Improved differentiation between treatment effects and recurrence could allow clinicians to adjust therapies more quickly, potentially improving outcomes for a highly aggressive brain cancer. This underlines the growing significance of AI-assisted multi-modal imaging in oncology workflows.

Source
Health Imaging
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.