
AI tools demonstrate higher accuracy than radiologists in predicting lung cancer treatment response from imaging studies.
Key Details
- 1Study published in Frontiers In Oncology.
- 2Meta-analysis included 11 studies and over 6,600 patients.
- 3AI models (radiomics and deep learning) assessed post-treatment scans.
- 4AI methods often outperformed human radiologists in predicting treatment response accuracy, sensitivity, and specificity.
- 5Early and objective response assessment can inform better, timely therapeutic decisions.
Why It Matters
Accurate and early treatment response prediction can directly influence patient management, potentially leading to improved outcomes for lung cancer patients. Demonstrating AI's superiority highlights a significant clinical application and value for radiologists, informing future adoption and research.

Source
Radiology Business
Related News

•HealthExec
New Report Highlights Clinical AI Performance, Sustainability, and Adoption Challenges
A multi-institutional review details key challenges, progress, and sustainability concerns in deploying clinical AI in real-world healthcare settings.

•Cardiovascular Business
FDA Clears AI Platform for Comprehensive Cardiac Risk Assessment on CT
HeartLung Corporation's AI-CVD receives FDA clearance for opportunistic multi-condition screening on routine chest CT scans.

•AuntMinnie
LLM Boosts Terminology Expansion in Radiology Reports Over RadLex
A large language model (LLM) significantly outperforms RadLex in expanding terms for radiology report language standardization.