
AI tools demonstrate higher accuracy than radiologists in predicting lung cancer treatment response from imaging studies.
Key Details
- 1Study published in Frontiers In Oncology.
- 2Meta-analysis included 11 studies and over 6,600 patients.
- 3AI models (radiomics and deep learning) assessed post-treatment scans.
- 4AI methods often outperformed human radiologists in predicting treatment response accuracy, sensitivity, and specificity.
- 5Early and objective response assessment can inform better, timely therapeutic decisions.
Why It Matters
Accurate and early treatment response prediction can directly influence patient management, potentially leading to improved outcomes for lung cancer patients. Demonstrating AI's superiority highlights a significant clinical application and value for radiologists, informing future adoption and research.

Source
Radiology Business
Related News

•Radiology Business
RadNet Study: AI Boosts Breast Cancer Detection in Largest-Ever Real-World Analysis
A massive real-world study by RadNet shows AI-assisted mammography increased breast cancer detection by 21.6%.

•AuntMinnie
Multimodal MRI Radiomics Model Predicts Long-Term Survival in Breast Cancer
A multimodal MRI radiomics and deep learning model outperformed traditional models in predicting 5- and 7-year survival for breast cancer patients receiving neoadjuvant chemotherapy.

•AuntMinnie
AI Predicts 10-Year Mortality and Hip Fracture Risk from DEXA Scans
A self-supervised AI model predicts 10-year mortality and hip fractures using only DEXA scans.