An AI model achieved high accuracy in identifying esophageal achalasia on chest x-rays, surpassing physician performance.
Key Details
- 1Deep-learning AI model trained using 207 x-rays from 144 achalasia patients and 240 controls.
- 2Validation performed on a separate test set: 17 achalasia and 64 control x-rays.
- 3Model achieved AUC of 0.964, sensitivity 0.941, and specificity 0.891.
- 4Outperformed four physicians on the same test cases.
- 5Achalasia is a rare disorder with diagnosis often delayed by 6.5 years on average.
- 6Noninvasive screening using existing chest x-ray data may enable earlier diagnosis.
Why It Matters
Utilizing routine chest x-rays and AI, clinicians could screen for achalasia in a noninvasive way, potentially reducing diagnostic delays and improving patient outcomes. This highlights AI's growing role in enhancing radiological workflows.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enhancement Dramatically Improves Quality of Suboptimal Chest CTs
AI-powered image enhancement significantly boosts the diagnostic quality of suboptimal chest CT and CTPA studies.

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.