An AI model achieved high accuracy in identifying esophageal achalasia on chest x-rays, surpassing physician performance.
Key Details
- 1Deep-learning AI model trained using 207 x-rays from 144 achalasia patients and 240 controls.
- 2Validation performed on a separate test set: 17 achalasia and 64 control x-rays.
- 3Model achieved AUC of 0.964, sensitivity 0.941, and specificity 0.891.
- 4Outperformed four physicians on the same test cases.
- 5Achalasia is a rare disorder with diagnosis often delayed by 6.5 years on average.
- 6Noninvasive screening using existing chest x-ray data may enable earlier diagnosis.
Why It Matters
Utilizing routine chest x-rays and AI, clinicians could screen for achalasia in a noninvasive way, potentially reducing diagnostic delays and improving patient outcomes. This highlights AI's growing role in enhancing radiological workflows.

Source
AuntMinnie
Related News

•AuntMinnie
AI Tool Mirai Shows Robust Performance for Interval Breast Cancer Detection
The Mirai AI model significantly improves detection of interval breast cancers in negative screening mammograms.

•Radiology Business
AI Tool Predicts Interval Breast Cancer Risk from Negative Mammograms
AI can predict interval breast cancer risk up to three years after a negative mammogram.

•Radiology Business
AI Outperforms Radiologists in Predicting Lung Cancer Treatment Response
AI tools demonstrate higher accuracy than radiologists in predicting lung cancer treatment response from imaging studies.