
A Johns Hopkins-led AI model outperforms current clinical guidelines in predicting risk of sudden cardiac death using cardiac MRI and patient records.
Key Details
- 1MAARS AI model analyzes contrast-enhanced cardiac MRI and medical records.
- 2Hypertrophic cardiomyopathy, a leading cause of sudden cardiac death, was the focus.
- 3Current guidelines identify high-risk patients with only ~50% accuracy; the AI reached 89% accuracy overall and 93% in ages 40-60.
- 4AI identifies critical heart scarring patterns (fibrosis) missed by doctors.
- 5Study published in Nature Cardiovascular Research; multi-institutional collaboration.
- 6Potential to both save lives and reduce unnecessary interventions like defibrillators.
Why It Matters

Source
EurekAlert
Related News

AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

Dana-Farber Showcases AI and Clinical Trial Advances at ESMO 2025
Dana-Farber researchers present major cancer clinical trial results, including AI-driven data analysis, at ESMO Congress 2025.

Einstein College Awarded $18M NIH Grant to Develop AI Tools for Mental Health Crisis Prediction
Albert Einstein College of Medicine received an $18 million NIH grant to create AI-based tools for predicting mental health crises using cognitive monitoring.