
A Johns Hopkins-led AI model outperforms current clinical guidelines in predicting risk of sudden cardiac death using cardiac MRI and patient records.
Key Details
- 1MAARS AI model analyzes contrast-enhanced cardiac MRI and medical records.
- 2Hypertrophic cardiomyopathy, a leading cause of sudden cardiac death, was the focus.
- 3Current guidelines identify high-risk patients with only ~50% accuracy; the AI reached 89% accuracy overall and 93% in ages 40-60.
- 4AI identifies critical heart scarring patterns (fibrosis) missed by doctors.
- 5Study published in Nature Cardiovascular Research; multi-institutional collaboration.
- 6Potential to both save lives and reduce unnecessary interventions like defibrillators.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.