
A Johns Hopkins-led AI model outperforms current clinical guidelines in predicting risk of sudden cardiac death using cardiac MRI and patient records.
Key Details
- 1MAARS AI model analyzes contrast-enhanced cardiac MRI and medical records.
- 2Hypertrophic cardiomyopathy, a leading cause of sudden cardiac death, was the focus.
- 3Current guidelines identify high-risk patients with only ~50% accuracy; the AI reached 89% accuracy overall and 93% in ages 40-60.
- 4AI identifies critical heart scarring patterns (fibrosis) missed by doctors.
- 5Study published in Nature Cardiovascular Research; multi-institutional collaboration.
- 6Potential to both save lives and reduce unnecessary interventions like defibrillators.
Why It Matters

Source
EurekAlert
Related News

AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.

AI-Enabled Hydrogel Patch Provides Long-Term High-Fidelity EEG and Attention Monitoring
Researchers unveil a reusable hydrogel patch with machine learning capabilities for high-fidelity EEG recording and attention assessment.

AI and Imaging Reveal Atomic Order in 2D Nanomaterials
A multi-university team has uncovered how atomic order and disorder in 2D MXene nanomaterials can be predicted and tailored using AI, enabled by advanced imaging analysis.