
Researchers developed an AI tool using natural language processing to accurately identify primary cancer types in patients with brain metastases by analyzing clinical notes.
Key Details
- 1MUSC Hollings Cancer Center team created an NLP model for electronic health records (EHR) notes.
- 2The tool correctly identified the primary cancer in over 90% of cases (97% for common types).
- 3It outperformed standard ICD codes, which often lack specificity for cancer origins and subtypes.
- 4The study analyzed 82,000 clinical notes from more than 1,400 stereotactic radiosurgery patients.
- 5The approach is lightweight, scalable, and requires relatively little data or computing power.
- 6The model can improve research and treatment planning for patients undergoing targeted brain radiation.
Why It Matters

Source
EurekAlert
Related News

MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

UCLA Researchers Present AI, Blood Biomarker Advances at SABCS 2025
UCLA Health researchers unveil major advances in breast cancer AI pathology, liquid biopsy, and biomarker strategies at the 2025 SABCS.

SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.