
Researchers developed an AI tool using natural language processing to accurately identify primary cancer types in patients with brain metastases by analyzing clinical notes.
Key Details
- 1MUSC Hollings Cancer Center team created an NLP model for electronic health records (EHR) notes.
- 2The tool correctly identified the primary cancer in over 90% of cases (97% for common types).
- 3It outperformed standard ICD codes, which often lack specificity for cancer origins and subtypes.
- 4The study analyzed 82,000 clinical notes from more than 1,400 stereotactic radiosurgery patients.
- 5The approach is lightweight, scalable, and requires relatively little data or computing power.
- 6The model can improve research and treatment planning for patients undergoing targeted brain radiation.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.