
Researchers developed an AI tool using natural language processing to accurately identify primary cancer types in patients with brain metastases by analyzing clinical notes.
Key Details
- 1MUSC Hollings Cancer Center team created an NLP model for electronic health records (EHR) notes.
- 2The tool correctly identified the primary cancer in over 90% of cases (97% for common types).
- 3It outperformed standard ICD codes, which often lack specificity for cancer origins and subtypes.
- 4The study analyzed 82,000 clinical notes from more than 1,400 stereotactic radiosurgery patients.
- 5The approach is lightweight, scalable, and requires relatively little data or computing power.
- 6The model can improve research and treatment planning for patients undergoing targeted brain radiation.
Why It Matters

Source
EurekAlert
Related News

AI-Enabled Nanoplatforms Combine Ferroptosis, Immunotherapy, and Imaging for Cancer
A groundbreaking review highlights how advanced nanoplatforms can synergistically integrate ferroptosis, immunotherapy, and multimodal imaging to optimize cancer therapy.

AI Repurposes Routine CT Scans for Osteoporosis Detection
AI algorithms can extract bone density data from routine CT scans to identify osteoporosis, enabling opportunistic screening.

AI Outperforms Radiologists in Detecting Hidden Airway Objects on Chest CT
Southampton researchers developed an AI that surpassed radiologists in detecting hard-to-see airway obstructions on chest CT scans.