
Researchers developed an AI tool using natural language processing to accurately identify primary cancer types in patients with brain metastases by analyzing clinical notes.
Key Details
- 1MUSC Hollings Cancer Center team created an NLP model for electronic health records (EHR) notes.
- 2The tool correctly identified the primary cancer in over 90% of cases (97% for common types).
- 3It outperformed standard ICD codes, which often lack specificity for cancer origins and subtypes.
- 4The study analyzed 82,000 clinical notes from more than 1,400 stereotactic radiosurgery patients.
- 5The approach is lightweight, scalable, and requires relatively little data or computing power.
- 6The model can improve research and treatment planning for patients undergoing targeted brain radiation.
Why It Matters

Source
EurekAlert
Related News

Mammogram-AI Accurately Predicts Women's Cardiovascular Disease Risk
AI analysis of mammogram images plus age predicts major cardiovascular disease risk as effectively as traditional tools.

Major Study Reveals Barriers to Implementing AI Chest Diagnostics in NHS Hospitals
A UCL-led study identifies significant challenges in deploying AI tools for chest diagnostics across NHS hospitals in England.

AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.