
Researchers developed an AI tool using natural language processing to accurately identify primary cancer types in patients with brain metastases by analyzing clinical notes.
Key Details
- 1MUSC Hollings Cancer Center team created an NLP model for electronic health records (EHR) notes.
- 2The tool correctly identified the primary cancer in over 90% of cases (97% for common types).
- 3It outperformed standard ICD codes, which often lack specificity for cancer origins and subtypes.
- 4The study analyzed 82,000 clinical notes from more than 1,400 stereotactic radiosurgery patients.
- 5The approach is lightweight, scalable, and requires relatively little data or computing power.
- 6The model can improve research and treatment planning for patients undergoing targeted brain radiation.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Prediction of Knee Osteoarthritis Progression Using MRI and Biomarkers
A new AI-assisted model that combines MRI, biochemical, and clinical data improves predictions of worsening knee osteoarthritis.

AI Trains on Pathologists’ Eye Movements to Improve Biopsy Analysis
Researchers developed a deep learning system using eye-tracking data to enhance AI-powered biopsy image interpretation.

AI Model Predicts Multiple Genetic Markers from Colorectal Pathology Slides
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.