
Researchers developed an AI model that can accurately detect fatty liver disease from routine chest X-rays.
Key Details
- 1The AI model was created by Osaka Metropolitan University researchers.
- 2It was trained and validated with 6,599 chest X-ray images from 4,414 patients.
- 3Model performance was strong, with AUC between 0.82 and 0.83.
- 4Chest X-rays are less costly and more commonly performed than ultrasounds, CTs, or MRIs currently used for liver diagnosis.
- 5Results were published in Radiology Cardiothoracic Imaging on June 20, 2025.
Why It Matters
This approach could enable earlier and more widespread detection of fatty liver disease using existing chest X-rays, reducing the need for more expensive or specialized imaging modalities. It demonstrates the potential for AI to repurpose common imaging studies for new clinical insights in radiology.

Source
EurekAlert
Related News

•EurekAlert
BraDiPho: New 3D AI Atlas Integrates Brain Dissections with MRI
Researchers have developed BraDiPho, a tool that merges ex-vivo photogrammetric brain dissection data with in-vivo MRI tractography using AI.

•EurekAlert
AI Maps Genetic Factors Shaping the Corpus Callosum via MRI Scans
USC researchers used AI to analyze MRI scans and uncover the genetic architecture of the brain's corpus callosum.

•EurekAlert
WashU Launches AI Imaging Center to Advance Precision Diagnostics
Washington University establishes a new center to develop AI-powered imaging tools for better diagnosis and precision medicine.