
Researchers developed an AI model that can accurately detect fatty liver disease from routine chest X-rays.
Key Details
- 1The AI model was created by Osaka Metropolitan University researchers.
- 2It was trained and validated with 6,599 chest X-ray images from 4,414 patients.
- 3Model performance was strong, with AUC between 0.82 and 0.83.
- 4Chest X-rays are less costly and more commonly performed than ultrasounds, CTs, or MRIs currently used for liver diagnosis.
- 5Results were published in Radiology Cardiothoracic Imaging on June 20, 2025.
Why It Matters
This approach could enable earlier and more widespread detection of fatty liver disease using existing chest X-rays, reducing the need for more expensive or specialized imaging modalities. It demonstrates the potential for AI to repurpose common imaging studies for new clinical insights in radiology.

Source
EurekAlert
Related News

•EurekAlert
MIT Introduces Interactive AI System for Fast Medical Image Annotation
MIT researchers have developed MultiverSeg, an interactive AI tool enabling efficient, user-driven segmentation of biomedical image datasets without prior model training.

•EurekAlert
Study Finds Gaps in FDA Safety Reporting for AI Medical Devices
A study highlights insufficient standardized safety and efficacy assessments for FDA-cleared AI/ML medical devices.

•EurekAlert
MSK Research: Proton Therapy, AI Pain Summaries, and Tumor Metastasis Insights
MSK Cancer Center research advances include proton therapy for leptomeningeal metastasis and evaluating large language models for cancer pain summary.