
Researchers developed an AI model that can accurately detect fatty liver disease from routine chest X-rays.
Key Details
- 1The AI model was created by Osaka Metropolitan University researchers.
- 2It was trained and validated with 6,599 chest X-ray images from 4,414 patients.
- 3Model performance was strong, with AUC between 0.82 and 0.83.
- 4Chest X-rays are less costly and more commonly performed than ultrasounds, CTs, or MRIs currently used for liver diagnosis.
- 5Results were published in Radiology Cardiothoracic Imaging on June 20, 2025.
Why It Matters
This approach could enable earlier and more widespread detection of fatty liver disease using existing chest X-rays, reducing the need for more expensive or specialized imaging modalities. It demonstrates the potential for AI to repurpose common imaging studies for new clinical insights in radiology.

Source
EurekAlert
Related News

•EurekAlert
AI and Imaging Reveal Atomic Order in 2D Nanomaterials
A multi-university team has uncovered how atomic order and disorder in 2D MXene nanomaterials can be predicted and tailored using AI, enabled by advanced imaging analysis.

•EurekAlert
DreamConnect AI Translates and Edits fMRI Brain Activity into Images
Researchers unveil DreamConnect, an AI system that reconstructs and edits visual imagery from fMRI brain data with language prompts.

•EurekAlert
AI-Powered Optical Imaging Achieves High Accuracy for Colorectal Cancer Detection
A label-free optical imaging technique using autofluorescence lifetime and AI can distinguish colorectal cancer with 85% accuracy.