Researchers created AI models to generate synthetic early-stage PDAC CT scans, boosting early tumor detection sensitivity.
Key Details
- 1Johns Hopkins team developed 'Time Machine' generative models for PDAC using 3,144 contrast-enhanced CT scans.
- 2Dataset included 2,098 annotated PDAC cases (categorized by tumor stage) and 1,046 normal controls.
- 3AI method synthesized realistic early-stage CTs from late-stage data to address scarcity of real early-stage scans.
- 4Model improved detection sensitivity for tumors <2 cm by 6% versus using only real data.
- 5In prediagnostic cases, the AI achieved 36.8% sensitivity where radiologists missed 100% of tumors in original reads.
Why It Matters

Source
AuntMinnie
Related News

Paul Chang Discusses Foundation Models and Agentic AI at RSNA 2025
Dr. Paul Chang shares his insights on the role of foundation models and agentic AI in radiology at RSNA 2025.

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.