
A deep learning model named Sybil can predict future lung cancer risk from a single low-dose chest CT scan, as validated in a large Asian cohort.
Key Details
- 1The Sybil model was validated using data from over 21,000 individuals aged 50-80 who underwent LDCT screening between 2009 and 2021.
- 2Sybil demonstrated strong predictive performance for lung cancer diagnosis both at one and six years following the scan.
- 3The model was effective even for never-smokers, a group for whom conventional screening guidelines may not apply.
- 4The research was presented at the ATS 2025 International Conference.
- 5Continued prospective validation is planned to assess clinical use and prediction of lung cancer-specific mortality.
Why It Matters

Source
EurekAlert
Related News

AI Repurposes Routine CT Scans for Osteoporosis Detection
AI algorithms can extract bone density data from routine CT scans to identify osteoporosis, enabling opportunistic screening.

AI Outperforms Radiologists in Detecting Hidden Airway Objects on Chest CT
Southampton researchers developed an AI that surpassed radiologists in detecting hard-to-see airway obstructions on chest CT scans.

AI Method Automates X-ray Absorption Spectroscopy for Material Analysis
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.