
A deep learning model named Sybil can predict future lung cancer risk from a single low-dose chest CT scan, as validated in a large Asian cohort.
Key Details
- 1The Sybil model was validated using data from over 21,000 individuals aged 50-80 who underwent LDCT screening between 2009 and 2021.
- 2Sybil demonstrated strong predictive performance for lung cancer diagnosis both at one and six years following the scan.
- 3The model was effective even for never-smokers, a group for whom conventional screening guidelines may not apply.
- 4The research was presented at the ATS 2025 International Conference.
- 5Continued prospective validation is planned to assess clinical use and prediction of lung cancer-specific mortality.
Why It Matters

Source
EurekAlert
Related News

MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.

AI Powers Breakthroughs in Optical Metasurface Design for Imaging
A review highlights how AI is revolutionizing the design of optical metasurfaces, advancing compact optics and computational imaging.