An AI model using CCTA distinguishes noncalcified plaque volumes in chest pain patients compared to asymptomatic patients.
Key Details
- 1AI model based on CCTA quantified plaque volumes in chest pain and asymptomatic patients.
- 2Study included 1,835 participants undergoing CCTA and quantitative plaque analysis from 2020-2024.
- 3Chest pain patients with midlevel CAC (100-300) had higher noncalcified plaque volume (152.3 vs. 108.9, p = 0.035).
- 4Symptomatic patients were generally younger and had lower systolic blood pressure than asymptomatic peers.
- 5No significant difference was found in statin use, hypertension, or diabetes prevalence between groups.
- 6Automated plaque analysis was performed using Cleerly software.
Why It Matters
The findings support using AI-driven CCTA analysis to help risk-stratify chest pain patients, potentially guiding preventive management decisions. Accurate plaque quantification may enhance diagnostic precision and patient care.

Source
AuntMinnie
Related News

•Radiology Business
Experts Urge Development of Generalist Radiology AI to Cut Costs and Improve Care
Leading scientists advocate for broader, generalist radiology AI models to overcome limitations of narrow, single-task solutions.

•AuntMinnie
General LLMs Show Promise in Detecting Critical Findings in Radiology Reports
Stanford and Mayo Clinic Arizona researchers demonstrated that LLMs like GPT-4 can categorize critical findings in radiology reports using few-shot prompting.

•AuntMinnie
Experts Outline Framework and Benefits for Generalist Radiology AI
Researchers propose key features and benefits for implementing generalist radiology AI (GRAI) frameworks over narrow AI tools.