An AI model using CCTA distinguishes noncalcified plaque volumes in chest pain patients compared to asymptomatic patients.
Key Details
- 1AI model based on CCTA quantified plaque volumes in chest pain and asymptomatic patients.
- 2Study included 1,835 participants undergoing CCTA and quantitative plaque analysis from 2020-2024.
- 3Chest pain patients with midlevel CAC (100-300) had higher noncalcified plaque volume (152.3 vs. 108.9, p = 0.035).
- 4Symptomatic patients were generally younger and had lower systolic blood pressure than asymptomatic peers.
- 5No significant difference was found in statin use, hypertension, or diabetes prevalence between groups.
- 6Automated plaque analysis was performed using Cleerly software.
Why It Matters

Source
AuntMinnie
Related News

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.

Nvidia, Amazon Drive AI Expansion Across Genomics and Radiology
Major healthcare and technology companies partner to push AI advancements in genomics, radiology, and broader healthcare.