An AI model using CCTA distinguishes noncalcified plaque volumes in chest pain patients compared to asymptomatic patients.
Key Details
- 1AI model based on CCTA quantified plaque volumes in chest pain and asymptomatic patients.
- 2Study included 1,835 participants undergoing CCTA and quantitative plaque analysis from 2020-2024.
- 3Chest pain patients with midlevel CAC (100-300) had higher noncalcified plaque volume (152.3 vs. 108.9, p = 0.035).
- 4Symptomatic patients were generally younger and had lower systolic blood pressure than asymptomatic peers.
- 5No significant difference was found in statin use, hypertension, or diabetes prevalence between groups.
- 6Automated plaque analysis was performed using Cleerly software.
Why It Matters
The findings support using AI-driven CCTA analysis to help risk-stratify chest pain patients, potentially guiding preventive management decisions. Accurate plaque quantification may enhance diagnostic precision and patient care.

Source
AuntMinnie
Related News

•Radiology Business
Aidoc Receives FDA Breakthrough Status for Multi-Condition CT AI Triage
Aidoc has received FDA Breakthrough Device status for its AI solution that flags multiple critical conditions in CT scans.

•Radiology Business
AI Triage Cuts CT Report Turnaround for Pulmonary Embolism—Daytime Only
FDA-backed study finds AI triage tools reduce radiology CT report turnaround times for pulmonary embolism during peak hours.

•Radiology Business
AI Tool Detects Elusive Epilepsy Lesions Missed by Radiologists
Researchers developed an AI tool that identifies focal cortical dysplasia on imaging, aiding diagnosis and surgical planning for epilepsy.