An AI model using CCTA distinguishes noncalcified plaque volumes in chest pain patients compared to asymptomatic patients.
Key Details
- 1AI model based on CCTA quantified plaque volumes in chest pain and asymptomatic patients.
- 2Study included 1,835 participants undergoing CCTA and quantitative plaque analysis from 2020-2024.
- 3Chest pain patients with midlevel CAC (100-300) had higher noncalcified plaque volume (152.3 vs. 108.9, p = 0.035).
- 4Symptomatic patients were generally younger and had lower systolic blood pressure than asymptomatic peers.
- 5No significant difference was found in statin use, hypertension, or diabetes prevalence between groups.
- 6Automated plaque analysis was performed using Cleerly software.
Why It Matters
The findings support using AI-driven CCTA analysis to help risk-stratify chest pain patients, potentially guiding preventive management decisions. Accurate plaque quantification may enhance diagnostic precision and patient care.

Source
AuntMinnie
Related News

•Cardiovascular Business
AI Model Dramatically Enhances Severe Heart Attack Detection via ECGs
Queen of Hearts AI model outperforms standard care in detecting severe heart attacks from ECGs.

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.