
Harvard radiologists developed an explainable AI model to predict next-day radiology demand and manage staffing proactively.
Key Details
- 1Harvard Medical School experts built a machine learning model using a year's imaging demand data from two academic centers.
- 2The model predicts next-day clinical workload based on unread images, exams after 5 p.m., and next-day scheduled exams.
- 3AI predictions could allow radiology practices to plan or adjust staffing in anticipation of demand surges.
- 4Continuous learning maintains the model's accuracy over time.
- 5Growing imaging volume and workforce shortages are driving the need for such solutions.
Why It Matters

Source
Radiology Business
Related News

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

AI Projected to Reshape Radiologist Workload But Not Eliminate Jobs
Stanford researchers predict AI could reduce radiologist hours by up to 49% over the next five years, though workforce size is likely to remain stable due to rising imaging demand.