
Harvard radiologists developed an explainable AI model to predict next-day radiology demand and manage staffing proactively.
Key Details
- 1Harvard Medical School experts built a machine learning model using a year's imaging demand data from two academic centers.
- 2The model predicts next-day clinical workload based on unread images, exams after 5 p.m., and next-day scheduled exams.
- 3AI predictions could allow radiology practices to plan or adjust staffing in anticipation of demand surges.
- 4Continuous learning maintains the model's accuracy over time.
- 5Growing imaging volume and workforce shortages are driving the need for such solutions.
Why It Matters

Source
Radiology Business
Related News

Paul Chang Discusses Foundation Models and Agentic AI at RSNA 2025
Dr. Paul Chang shares his insights on the role of foundation models and agentic AI in radiology at RSNA 2025.

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.