
Harvard radiologists developed an explainable AI model to predict next-day radiology demand and manage staffing proactively.
Key Details
- 1Harvard Medical School experts built a machine learning model using a year's imaging demand data from two academic centers.
- 2The model predicts next-day clinical workload based on unread images, exams after 5 p.m., and next-day scheduled exams.
- 3AI predictions could allow radiology practices to plan or adjust staffing in anticipation of demand surges.
- 4Continuous learning maintains the model's accuracy over time.
- 5Growing imaging volume and workforce shortages are driving the need for such solutions.
Why It Matters
Proactively forecasting imaging demand with AI can help radiology departments address staffing challenges and reduce burnout. Such tools may become essential for efficient, resilient healthcare delivery as imaging workloads increase.

Source
Radiology Business
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.