
Researchers have developed a machine learning-based gene signature, NPC-RSS, to predict which nasopharyngeal cancer patients will benefit from radiotherapy.
Key Details
- 1A team at Southern Medical University created the NPC-RSS model using transcriptomic data from NPC patients.
- 2The model uses an 18-gene signature and was refined using 113 machine learning algorithm combinations.
- 3NPC-RSS demonstrated strong predictive accuracy in both internal and external validation datasets.
- 4Radiosensitive tumors showed richer immune cell activity, suggesting immune dynamics play a role in radiotherapy response.
- 5The tool aims to guide personalized radiotherapy decisions and reduce unnecessary treatment exposure.
- 6Further sample collection and international validation are ongoing to refine the model.
Why It Matters

Source
EurekAlert
Related News

Sybil AI Model Accurately Predicts Lung Cancer Risk in Diverse Urban Populations
A new study validates the Sybil AI model for predicting lung cancer risk using low-dose CT in a predominantly Black cohort at an urban safety-net hospital.

AI and Imaging Reveal Atomic Order in 2D Nanomaterials
A multi-university team has uncovered how atomic order and disorder in 2D MXene nanomaterials can be predicted and tailored using AI, enabled by advanced imaging analysis.

DreamConnect AI Translates and Edits fMRI Brain Activity into Images
Researchers unveil DreamConnect, an AI system that reconstructs and edits visual imagery from fMRI brain data with language prompts.