
Researchers have developed a machine learning-based gene signature, NPC-RSS, to predict which nasopharyngeal cancer patients will benefit from radiotherapy.
Key Details
- 1A team at Southern Medical University created the NPC-RSS model using transcriptomic data from NPC patients.
- 2The model uses an 18-gene signature and was refined using 113 machine learning algorithm combinations.
- 3NPC-RSS demonstrated strong predictive accuracy in both internal and external validation datasets.
- 4Radiosensitive tumors showed richer immune cell activity, suggesting immune dynamics play a role in radiotherapy response.
- 5The tool aims to guide personalized radiotherapy decisions and reduce unnecessary treatment exposure.
- 6Further sample collection and international validation are ongoing to refine the model.
Why It Matters

Source
EurekAlert
Related News

MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

UCLA Researchers Present AI, Blood Biomarker Advances at SABCS 2025
UCLA Health researchers unveil major advances in breast cancer AI pathology, liquid biopsy, and biomarker strategies at the 2025 SABCS.

SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.