
Researchers have developed a machine learning-based gene signature, NPC-RSS, to predict which nasopharyngeal cancer patients will benefit from radiotherapy.
Key Details
- 1A team at Southern Medical University created the NPC-RSS model using transcriptomic data from NPC patients.
- 2The model uses an 18-gene signature and was refined using 113 machine learning algorithm combinations.
- 3NPC-RSS demonstrated strong predictive accuracy in both internal and external validation datasets.
- 4Radiosensitive tumors showed richer immune cell activity, suggesting immune dynamics play a role in radiotherapy response.
- 5The tool aims to guide personalized radiotherapy decisions and reduce unnecessary treatment exposure.
- 6Further sample collection and international validation are ongoing to refine the model.
Why It Matters
Personalized radiotherapy guided by AI can improve outcomes in nasopharyngeal cancer by identifying patients most likely to benefit, addressing the challenge of radiation resistance. This tool could help clinicians tailor therapies, limit overtreatment, and improve patient survival.

Source
EurekAlert
Related News

•EurekAlert
AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

•EurekAlert
AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

•EurekAlert
AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.