
Researchers have developed a machine learning-based gene signature, NPC-RSS, to predict which nasopharyngeal cancer patients will benefit from radiotherapy.
Key Details
- 1A team at Southern Medical University created the NPC-RSS model using transcriptomic data from NPC patients.
- 2The model uses an 18-gene signature and was refined using 113 machine learning algorithm combinations.
- 3NPC-RSS demonstrated strong predictive accuracy in both internal and external validation datasets.
- 4Radiosensitive tumors showed richer immune cell activity, suggesting immune dynamics play a role in radiotherapy response.
- 5The tool aims to guide personalized radiotherapy decisions and reduce unnecessary treatment exposure.
- 6Further sample collection and international validation are ongoing to refine the model.
Why It Matters

Source
EurekAlert
Related News

MIT Introduces Interactive AI System for Fast Medical Image Annotation
MIT researchers have developed MultiverSeg, an interactive AI tool enabling efficient, user-driven segmentation of biomedical image datasets without prior model training.

Study Finds Gaps in FDA Safety Reporting for AI Medical Devices
A study highlights insufficient standardized safety and efficacy assessments for FDA-cleared AI/ML medical devices.

UCLA Unveils Light-Based AI System for Energy-Efficient Image Generation
Researchers at UCLA have developed an optical generative AI model that creates images using minimal energy and computational steps.