AI Model Predicts Microsatellite Instability and Immunotherapy Response from Histology

Yonsei University researchers introduced MSI-SEER, an AI model for MSI and immunotherapy response prediction from histology images of gastric and colorectal cancers.
Key Details
- 1MSI-SEER uses deep Gaussian process modeling to analyze H&E-stained whole-slide images.
- 2The model integrates uncertainty quantification, providing a Bayesian Confidence Score for each prediction.
- 3MSI-SEER flags uncertain cases for human review to enhance reliability and safety.
- 4Validated on large, racially diverse datasets, it achieved state-of-the-art MSI prediction accuracy.
- 5The model also predicts immune checkpoint inhibitor (ICI) response, integrating tumor MSI status and stroma-to-tumor ratio.
- 6Published in npj Digital Medicine on May 19, 2025.
Why It Matters

Source
EurekAlert
Related News

MIT Introduces Interactive AI System for Fast Medical Image Annotation
MIT researchers have developed MultiverSeg, an interactive AI tool enabling efficient, user-driven segmentation of biomedical image datasets without prior model training.

Study Finds Gaps in FDA Safety Reporting for AI Medical Devices
A study highlights insufficient standardized safety and efficacy assessments for FDA-cleared AI/ML medical devices.

UCLA Unveils Light-Based AI System for Energy-Efficient Image Generation
Researchers at UCLA have developed an optical generative AI model that creates images using minimal energy and computational steps.