
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.
Key Details
- 1ARNet-v2 uses lateral cephalometric radiographs to identify cervical vertebrae keypoints.
- 2The model allows a single clinician correction to propagate, boosting efficiency and accuracy.
- 3Tested on 5,700+ radiographs and across four public datasets, ARNet-v2 reduced prediction failures by up to 67%.
- 4Manual annotation requirements are halved compared to conventional approaches.
- 5The AI may reduce the need for additional hand–wrist X-rays, lowering radiation exposure for pediatric patients.
- 6Published in Medical Image Analysis, July 2025.
Why It Matters

Source
EurekAlert
Related News

AI-Driven CT Imaging Predicts Cardiac Events in Large UK Cohort
An AI tool analyzing CCTA images can predict future cardiovascular events and death in patients with suspected stable coronary artery disease.

AI Multimodal Models Improve Breast Cancer Recurrence Risk Prediction
Initial results from an ECOG-ACRIN and Caris Life Sciences collaboration show AI-driven multimodal models can more accurately predict recurrence risk in early-stage breast cancer.

AI Tool from UCLA Targets Undiagnosed Alzheimer's and Diagnostic Disparity
UCLA researchers developed an AI model using EHR data to better detect undiagnosed Alzheimer's disease, especially in underrepresented groups.