
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.
Key Details
- 1ARNet-v2 uses lateral cephalometric radiographs to identify cervical vertebrae keypoints.
- 2The model allows a single clinician correction to propagate, boosting efficiency and accuracy.
- 3Tested on 5,700+ radiographs and across four public datasets, ARNet-v2 reduced prediction failures by up to 67%.
- 4Manual annotation requirements are halved compared to conventional approaches.
- 5The AI may reduce the need for additional hand–wrist X-rays, lowering radiation exposure for pediatric patients.
- 6Published in Medical Image Analysis, July 2025.
Why It Matters

Source
EurekAlert
Related News

AI Repurposes Routine CT Scans for Osteoporosis Detection
AI algorithms can extract bone density data from routine CT scans to identify osteoporosis, enabling opportunistic screening.

AI Outperforms Radiologists in Detecting Hidden Airway Objects on Chest CT
Southampton researchers developed an AI that surpassed radiologists in detecting hard-to-see airway obstructions on chest CT scans.

AI Method Automates X-ray Absorption Spectroscopy for Material Analysis
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.