
An AI model can accurately flag EGFR mutations in lung adenocarcinoma using routine pathology slides, reducing the need for rapid genetic tests.
Key Details
- 1Researchers from Mount Sinai, Memorial Sloan Kettering, and collaborators published results in Nature Medicine on July 9, 2025.
- 2The AI model predicts EGFR mutations from H&E-stained pathology slides of lung adenocarcinoma.
- 3A live 'silent trial' at Memorial Sloan Kettering showed the model could reduce rapid genetic testing by over 40%.
- 4The model was trained and validated on the largest multi-institutional dataset of matched slides and sequencing results from the US and Europe.
- 5Preserving tissue by avoiding unnecessary rapid tests allows for more comprehensive genomic sequencing.
- 6Work is ongoing to broaden the model's biomarker detection and deploy it in more healthcare settings.
Why It Matters

Source
EurekAlert
Related News

AI Method Automates X-ray Absorption Spectroscopy for Material Analysis
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.

BraDiPho: New 3D AI Atlas Integrates Brain Dissections with MRI
Researchers have developed BraDiPho, a tool that merges ex-vivo photogrammetric brain dissection data with in-vivo MRI tractography using AI.

AI Maps Genetic Factors Shaping the Corpus Callosum via MRI Scans
USC researchers used AI to analyze MRI scans and uncover the genetic architecture of the brain's corpus callosum.