A deep-learning model predicts coronary artery calcium (CAC) scores from chest x-rays, improving risk assessment for coronary artery disease.
Key Details
- 1Researchers developed and validated an AI model to predict CAC scores from chest x-rays.
- 2The study analyzed data from 10,230 patients with paired chest x-rays and CAC scores.
- 3Models were trained to classify risk based on CAC thresholds of 0, 100, and 400.
- 4Best performance AUCs were 0.74–0.79 (x-ray only), improving to 0.77–0.82 with clinical variables.
- 5External validation resulted in consistent AUCs of 0.78–0.81, supporting robustness.
Why It Matters
This research demonstrates AI's potential to estimate coronary risk from routine chest x-rays, reducing reliance on CT, lowering costs, and minimizing radiation exposure for cardiovascular risk assessment.

Source
AuntMinnie
Related News

•Radiology Business
Aidoc Receives FDA Breakthrough Status for Multi-Condition CT AI Triage
Aidoc has received FDA Breakthrough Device status for its AI solution that flags multiple critical conditions in CT scans.

•Radiology Business
AI Triage Cuts CT Report Turnaround for Pulmonary Embolism—Daytime Only
FDA-backed study finds AI triage tools reduce radiology CT report turnaround times for pulmonary embolism during peak hours.

•Radiology Business
AI Tool Detects Elusive Epilepsy Lesions Missed by Radiologists
Researchers developed an AI tool that identifies focal cortical dysplasia on imaging, aiding diagnosis and surgical planning for epilepsy.