A deep-learning model predicts coronary artery calcium (CAC) scores from chest x-rays, improving risk assessment for coronary artery disease.
Key Details
- 1Researchers developed and validated an AI model to predict CAC scores from chest x-rays.
- 2The study analyzed data from 10,230 patients with paired chest x-rays and CAC scores.
- 3Models were trained to classify risk based on CAC thresholds of 0, 100, and 400.
- 4Best performance AUCs were 0.74–0.79 (x-ray only), improving to 0.77–0.82 with clinical variables.
- 5External validation resulted in consistent AUCs of 0.78–0.81, supporting robustness.
Why It Matters

Source
AuntMinnie
Related News

LLMs Demonstrate Strong Potential in Interventional Radiology Patient Education
DeepSeek-V3 and ChatGPT-4o excelled in accurately answering patient questions about interventional radiology procedures, suggesting LLMs' growing role in clinical communication.

Women's Uncertainty About AI in Breast Imaging May Limit Acceptance
Many women remain unclear about the role of AI in breast imaging, creating hesitation toward its adoption.

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.