
AI models combining mammography and clinical data improve identification of women at high short-term breast cancer risk.
Key Details
- 1Researchers combined clinical information with mammogram data in risk assessment models.
- 2The study used data from over 2,000 women screened for breast cancer between 2013 and 2020.
- 3418 women developed breast cancer within two years; 1,775 remained cancer-free for at least two years.
- 4Traditional risk models focus on the long-term (5–10 years), but new AI models target short-term (2-year) prediction.
- 5Short-term models can enable more targeted screening and earlier, less invasive intervention.
Why It Matters

Source
Health Imaging
Related News

AI's Expanding Role in Healthcare and Implications for Radiology
A series of thought leaders and institutions weigh in on AI's transformative potential in healthcare, with emphasis on radiology adoption and responsible use.

Most Radiology AI Users Lack Clear Evidence of Financial ROI
Survey finds over 75% of radiology organizations using AI lack clear, quantified ROI data.

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.