AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.
Key Details
- 1Patients with oral mucositis after HSCT are almost 4x more likely to develop serious infections.
- 2A new AI-driven nomogram using demographic and clinical features shows superior predictive accuracy versus traditional models.
- 3Explainable AI provided clinicians with rationale for predictions, enabling targeted preventive care.
- 4Meta-analysis identified high-risk groups and specific risk factors such as chemotherapy types, age, and kidney issues.
- 5Researchers are working towards broad clinical adoption, including validation for other adverse events in cancer therapy.
- 6Findings were recently published in the journal Cancers and presented at MASCC 2025.
Why It Matters

Source
EurekAlert
Related News

AI Method Automates X-ray Absorption Spectroscopy for Material Analysis
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.

BraDiPho: New 3D AI Atlas Integrates Brain Dissections with MRI
Researchers have developed BraDiPho, a tool that merges ex-vivo photogrammetric brain dissection data with in-vivo MRI tractography using AI.

AI Maps Genetic Factors Shaping the Corpus Callosum via MRI Scans
USC researchers used AI to analyze MRI scans and uncover the genetic architecture of the brain's corpus callosum.