AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.
Key Details
- 1Patients with oral mucositis after HSCT are almost 4x more likely to develop serious infections.
- 2A new AI-driven nomogram using demographic and clinical features shows superior predictive accuracy versus traditional models.
- 3Explainable AI provided clinicians with rationale for predictions, enabling targeted preventive care.
- 4Meta-analysis identified high-risk groups and specific risk factors such as chemotherapy types, age, and kidney issues.
- 5Researchers are working towards broad clinical adoption, including validation for other adverse events in cancer therapy.
- 6Findings were recently published in the journal Cancers and presented at MASCC 2025.
Why It Matters

Source
EurekAlert
Related News

AI Enables Rapid Body Composition Analysis on Routine MRI to Predict Cardiometabolic Risk
An open-source AI tool can quickly and accurately assess body composition from routine MRI, helping identify patients at elevated cardiometabolic risk.

Study Finds Gaps in FDA Safety Reporting for AI Medical Devices
A study highlights insufficient standardized safety and efficacy assessments for FDA-cleared AI/ML medical devices.

MIT Introduces Interactive AI System for Fast Medical Image Annotation
MIT researchers have developed MultiverSeg, an interactive AI tool enabling efficient, user-driven segmentation of biomedical image datasets without prior model training.