AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.
Key Details
- 1Patients with oral mucositis after HSCT are almost 4x more likely to develop serious infections.
- 2A new AI-driven nomogram using demographic and clinical features shows superior predictive accuracy versus traditional models.
- 3Explainable AI provided clinicians with rationale for predictions, enabling targeted preventive care.
- 4Meta-analysis identified high-risk groups and specific risk factors such as chemotherapy types, age, and kidney issues.
- 5Researchers are working towards broad clinical adoption, including validation for other adverse events in cancer therapy.
- 6Findings were recently published in the journal Cancers and presented at MASCC 2025.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.