
Researchers developed the crossNN AI model that classifies over 170 cancer types from DNA methylation data, achieving over 97% accuracy and enabling non-invasive diagnosis from liquid biopsies and tissue samples.
Key Details
- 1crossNN is a simple, explainable neural network AI trained on 8,000+ reference tumors and tested on 5,000+ tumors.
- 2Achieved 99.1% accuracy for brain tumor diagnosis; 97.8% accuracy across more than 170 tumor types from all organs.
- 3Uses DNA methylation profiles obtained from tissue or body fluids (e.g., cerebrospinal fluid), enabling some diagnoses to avoid surgical biopsies.
- 4Proven more accurate than previous AI solutions for tumor classification.
- 5The method is being prepared for clinical trials at all eight sites of the German Cancer Consortium.
- 6crossNN's workflow is fully explainable, meeting a key regulatory requirement for clinical adoption.
Why It Matters

Source
EurekAlert
Related News

MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

UCLA Researchers Present AI, Blood Biomarker Advances at SABCS 2025
UCLA Health researchers unveil major advances in breast cancer AI pathology, liquid biopsy, and biomarker strategies at the 2025 SABCS.

SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.