
Researchers developed the crossNN AI model that classifies over 170 cancer types from DNA methylation data, achieving over 97% accuracy and enabling non-invasive diagnosis from liquid biopsies and tissue samples.
Key Details
- 1crossNN is a simple, explainable neural network AI trained on 8,000+ reference tumors and tested on 5,000+ tumors.
- 2Achieved 99.1% accuracy for brain tumor diagnosis; 97.8% accuracy across more than 170 tumor types from all organs.
- 3Uses DNA methylation profiles obtained from tissue or body fluids (e.g., cerebrospinal fluid), enabling some diagnoses to avoid surgical biopsies.
- 4Proven more accurate than previous AI solutions for tumor classification.
- 5The method is being prepared for clinical trials at all eight sites of the German Cancer Consortium.
- 6crossNN's workflow is fully explainable, meeting a key regulatory requirement for clinical adoption.
Why It Matters

Source
EurekAlert
Related News

AI Method Automates X-ray Absorption Spectroscopy for Material Analysis
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.

BraDiPho: New 3D AI Atlas Integrates Brain Dissections with MRI
Researchers have developed BraDiPho, a tool that merges ex-vivo photogrammetric brain dissection data with in-vivo MRI tractography using AI.

AI Maps Genetic Factors Shaping the Corpus Callosum via MRI Scans
USC researchers used AI to analyze MRI scans and uncover the genetic architecture of the brain's corpus callosum.