
Researchers developed the crossNN AI model that classifies over 170 cancer types from DNA methylation data, achieving over 97% accuracy and enabling non-invasive diagnosis from liquid biopsies and tissue samples.
Key Details
- 1crossNN is a simple, explainable neural network AI trained on 8,000+ reference tumors and tested on 5,000+ tumors.
- 2Achieved 99.1% accuracy for brain tumor diagnosis; 97.8% accuracy across more than 170 tumor types from all organs.
- 3Uses DNA methylation profiles obtained from tissue or body fluids (e.g., cerebrospinal fluid), enabling some diagnoses to avoid surgical biopsies.
- 4Proven more accurate than previous AI solutions for tumor classification.
- 5The method is being prepared for clinical trials at all eight sites of the German Cancer Consortium.
- 6crossNN's workflow is fully explainable, meeting a key regulatory requirement for clinical adoption.
Why It Matters

Source
EurekAlert
Related News

AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.

AI-Enabled Hydrogel Patch Provides Long-Term High-Fidelity EEG and Attention Monitoring
Researchers unveil a reusable hydrogel patch with machine learning capabilities for high-fidelity EEG recording and attention assessment.

AI and Imaging Reveal Atomic Order in 2D Nanomaterials
A multi-university team has uncovered how atomic order and disorder in 2D MXene nanomaterials can be predicted and tailored using AI, enabled by advanced imaging analysis.