
An AI model developed by Johns Hopkins significantly outperforms current risk scores in predicting post-surgical complications using routine ECG data.
Key Details
- 1Johns Hopkins researchers developed AI models to analyze pre-surgical electrocardiograms (ECG).
- 2Models were trained using data from 37,000 surgery patients at Beth Israel Deaconess Medical Center.
- 3The best-performing fusion model predicted serious post-surgical complications with 85% accuracy.
- 4Current clinical risk scoring methods are only about 60% accurate.
- 5The work was federally funded and results were published in the British Journal of Anaesthesia.
- 6The AI can identify previously undetectable signals in ECGs relevant to surgical risk.
Why It Matters

Source
EurekAlert
Related News

Study Questions Universal Benefit of AI Virtual Staining in Medical Imaging
University of Illinois researchers found AI-based virtual staining sometimes reduces information utility in medical images, especially with high-capacity networks.

Advances in Multimodal Imaging and AI for Radiation-Induced Brain Injury
A state-of-the-art review highlights the use of multimodal imaging and AI to improve diagnosis and management of radiation-induced brain injury (RIBI).

Cellular Mechanisms Behind Retinal Oscillations in Night Blindness
Loss of the TRPM1 ion channel leads to rhythmic retinal signals linked to night blindness and other degenerative eye diseases.