
An AI model developed by Johns Hopkins significantly outperforms current risk scores in predicting post-surgical complications using routine ECG data.
Key Details
- 1Johns Hopkins researchers developed AI models to analyze pre-surgical electrocardiograms (ECG).
- 2Models were trained using data from 37,000 surgery patients at Beth Israel Deaconess Medical Center.
- 3The best-performing fusion model predicted serious post-surgical complications with 85% accuracy.
- 4Current clinical risk scoring methods are only about 60% accurate.
- 5The work was federally funded and results were published in the British Journal of Anaesthesia.
- 6The AI can identify previously undetectable signals in ECGs relevant to surgical risk.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Differentiation of Brain Tumor Progression from Radiation Necrosis on MRI
A York University-led study shows a novel AI using advanced MRI can distinguish between progressive brain tumors and radiation necrosis more accurately than human assessment.

AutoML Model Accurately Differentiates Brain Tumors on MRI
Thomas Jefferson University researchers developed an AutoML model that distinguishes pituitary macroadenomas from parasellar meningiomas on MRI with over 97% accuracy.

Survey: Public Trusts Doctors Over AI, But Embraces AI For Cancer Diagnosis
Most people trust doctors more than AI for health diagnoses, but see significant potential for AI tools in cancer detection.