
An AI model developed by Johns Hopkins significantly outperforms current risk scores in predicting post-surgical complications using routine ECG data.
Key Details
- 1Johns Hopkins researchers developed AI models to analyze pre-surgical electrocardiograms (ECG).
- 2Models were trained using data from 37,000 surgery patients at Beth Israel Deaconess Medical Center.
- 3The best-performing fusion model predicted serious post-surgical complications with 85% accuracy.
- 4Current clinical risk scoring methods are only about 60% accurate.
- 5The work was federally funded and results were published in the British Journal of Anaesthesia.
- 6The AI can identify previously undetectable signals in ECGs relevant to surgical risk.
Why It Matters

Source
EurekAlert
Related News

ML and Multimodal Imaging Power Cerebral Blood Flow Monitoring for Spaceflight
Researchers developed a machine learning model that uses ultrasound and MRI data to predict cerebral blood flow in simulated microgravity for astronaut health.

Deep Learning Model Predicts Language Outcomes After Cochlear Implants Using MRI
AI model using deep transfer learning accurately predicts spoken language outcomes in deaf children after cochlear implantation based on pre-implantation brain MRI scans.

AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.