
A machine learning model using random forest analysis improves the prediction of mortality risk in hospitalized patients with cirrhosis.
Key Details
- 1Study analyzed data from 121 hospitals worldwide participating in the CLEARED consortium.
- 2Random forest AI model outperformed traditional risk prediction methods for hospitalized cirrhosis patients.
- 3Model maintained accuracy across both high- and low-income countries.
- 4External validation was performed using National U.S. veterans’ data.
- 5Effective risk stratification was possible with just 15 variables.
- 6The tool grouped patients by mortality risk, supporting clinical decision-making.
Why It Matters
This study highlights the growing potential for AI to enhance clinical prognostication, supporting triage and care prioritization. AI models like this can be adapted to radiology and imaging datasets to similarly improve patient management and operational workflows.

Source
EurekAlert
Related News

•EurekAlert
BraDiPho: New 3D AI Atlas Integrates Brain Dissections with MRI
Researchers have developed BraDiPho, a tool that merges ex-vivo photogrammetric brain dissection data with in-vivo MRI tractography using AI.

•EurekAlert
AI Maps Genetic Factors Shaping the Corpus Callosum via MRI Scans
USC researchers used AI to analyze MRI scans and uncover the genetic architecture of the brain's corpus callosum.

•EurekAlert
WashU Launches AI Imaging Center to Advance Precision Diagnostics
Washington University establishes a new center to develop AI-powered imaging tools for better diagnosis and precision medicine.