
A machine learning model using random forest analysis improves the prediction of mortality risk in hospitalized patients with cirrhosis.
Key Details
- 1Study analyzed data from 121 hospitals worldwide participating in the CLEARED consortium.
- 2Random forest AI model outperformed traditional risk prediction methods for hospitalized cirrhosis patients.
- 3Model maintained accuracy across both high- and low-income countries.
- 4External validation was performed using National U.S. veterans’ data.
- 5Effective risk stratification was possible with just 15 variables.
- 6The tool grouped patients by mortality risk, supporting clinical decision-making.
Why It Matters
This study highlights the growing potential for AI to enhance clinical prognostication, supporting triage and care prioritization. AI models like this can be adapted to radiology and imaging datasets to similarly improve patient management and operational workflows.

Source
EurekAlert
Related News

•EurekAlert
Study Warns: AI Alone Is Not Enough in Critical Healthcare Decisions
Evaluating both AI algorithms and human users is key for safe adoption in high-stakes healthcare settings, according to an Ohio State study.

•EurekAlert
AI Dramatically Improves Prediction of Delivery Timing from Ultrasound Images
Ultrasound AI's study validates advanced AI for predicting delivery timing using standard ultrasound images.

•EurekAlert
AI-Assisted Colonoscopies May Reduce Clinicians’ Detection Skills, Study Finds
Routine use of AI in colonoscopies linked to decreased skill in adenoma detection by clinicians without AI assistance.