An AI model accurately predicted breast cancer risk in a racially and ethnically diverse screening population using mammogram data.
Key Details
- 1Study included 206,929 women (average age 56.1) from a province-wide screening program starting at age 40.
- 2AI model used both current and up to four years of prior mammograms for risk scoring.
- 3Model achieved AUROC of 0.78 overall, 0.77 in East Asian, 0.77 in Indigenous, and 0.75 in South Asian women.
- 44,168 breast cancer cases confirmed over an average 5.3-year follow-up.
- 5Model showed consistent performance across age groups and ethnicities.
Why It Matters
Demonstrating robust, consistent AI performance across diverse populations supports its broader clinical adoption. Such risk models may enable more personalized and equitable breast cancer screening and resource allocation.

Source
AuntMinnie
Related News

•Radiology Business
Hybrid AI Approach Cuts Mammography Workload by 38%
A Dutch research team demonstrated that a 'hybrid' AI strategy can reduce radiologist workload in mammography screening by nearly 40% without affecting performance.

•AuntMinnie
Habitat AI Model Improves Risk Stratification of Lung Nodules on LDCT
A 'habitat' AI model outperforms standard 2D approaches in stratifying lung adenocarcinoma risk in subsolid nodules on low-dose CT scans.

•AuntMinnie
AI Model Uses Chest CT to Diagnose and Grade COPD Severity
A machine learning model based on chest CT images accurately diagnoses and grades the severity of COPD.