A deep learning model accurately identifies hard-to-detect physeal fractures in children's wrist x-rays.
Key Details
- 1AI model developed using 2,103 x-rays from 1,082 pediatric patients (mean age 10)
- 2Best performing model (EfficientNet-B2) achieved 84% accuracy, 81% precision, 89% recall, and F1-score of 0.86 on test data
- 3Model uses Grad-CAM for interpretability, highlighting regions contributing to decisions
- 4Physeal fractures are often misdiagnosed (up to 46% rate), risking later growth deformities
- 5Proposed use as decision-support tool in urgent care and ER settings; potential to reduce missed diagnoses
Why It Matters

Source
AuntMinnie
Related News

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

AI Projected to Reshape Radiologist Workload But Not Eliminate Jobs
Stanford researchers predict AI could reduce radiologist hours by up to 49% over the next five years, though workforce size is likely to remain stable due to rising imaging demand.