Researchers developed an AI model that accurately distinguishes between multiple dementia types using extensive, heterogeneous brain imaging data.
Key Details
- 1The model was trained and tested on 308,000 3D brain images from 17,000 patients collected over two decades.
- 2It detects vascular dementia, Alzheimer's, Lewy body dementia, Parkinson's, and mild cognitive impairment, with AUC >0.84 for these conditions.
- 3The dataset included multiple modalities (T1 MRI, T2 MRI, CT, PET), reflecting real-world clinical complexity and variation.
- 4The neural network is structured to handle varying numbers and types of images per patient (1–14), mitigating confounding variables like scanning site and age.
- 5Testing across multiple hospital sites demonstrated the model’s robustness to real-world heterogeneity.
- 6Future directions include larger datasets and development of explainable AI for neuroimaging disease detection.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.