An AI tool using echocardiograms accurately screens for cardiac amyloidosis, outperforming traditional detection methods.
Key Details
- 1AI model analyzes echocardiogram (ultrasound) images to screen for cardiac amyloidosis.
- 2Developed by Mayo Clinic and Ultromics; validated in a global, multi-ethnic cohort across 18 hospitals.
- 3Achieved 85% sensitivity and 93% specificity in detecting or ruling out cardiac amyloidosis.
- 4Outperformed existing clinical scoring systems for early diagnosis.
- 5FDA-cleared and already being implemented in multiple US hospitals.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.