
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.
Key Details
- 1X-ray absorption spectroscopy (XAS) is critical for determining materials’ properties but is traditionally labor-intensive and requires expertise.
- 2A Tokyo University of Science team applied machine learning, especially UMAP, to automate analysis and classification of XAS data.
- 3UMAP outperformed other dimensionality reduction techniques in accurately identifying boron nitride structures and defects.
- 4The AI-based system proved robust against real-world noise in experimental XAS data and offers higher accuracy than prior statistical approaches.
- 5The method is being deployed at the Nano-Terasu synchrotron radiation center and is expected to accelerate material design.
Why It Matters
Automating XAS analysis with AI can dramatically speed up and objectify material characterization and design, potentially influencing imaging physics, research, and advanced imaging informatics. This approach demonstrates a broader application of AI to complex imaging data, which could cross-inform developments in radiology AI.

Source
EurekAlert
Related News

•EurekAlert
BraDiPho: New 3D AI Atlas Integrates Brain Dissections with MRI
Researchers have developed BraDiPho, a tool that merges ex-vivo photogrammetric brain dissection data with in-vivo MRI tractography using AI.

•EurekAlert
AI Maps Genetic Factors Shaping the Corpus Callosum via MRI Scans
USC researchers used AI to analyze MRI scans and uncover the genetic architecture of the brain's corpus callosum.

•EurekAlert
AI Accurately Detects Heart Disease via Smartwatch ECG in 600-Patient Study
An AI tool accurately detected structural heart disease from smartwatch single-lead ECGs in a 600-person prospective trial.