
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.
Key Details
- 1X-ray absorption spectroscopy (XAS) is critical for determining materials’ properties but is traditionally labor-intensive and requires expertise.
- 2A Tokyo University of Science team applied machine learning, especially UMAP, to automate analysis and classification of XAS data.
- 3UMAP outperformed other dimensionality reduction techniques in accurately identifying boron nitride structures and defects.
- 4The AI-based system proved robust against real-world noise in experimental XAS data and offers higher accuracy than prior statistical approaches.
- 5The method is being deployed at the Nano-Terasu synchrotron radiation center and is expected to accelerate material design.
Why It Matters
Automating XAS analysis with AI can dramatically speed up and objectify material characterization and design, potentially influencing imaging physics, research, and advanced imaging informatics. This approach demonstrates a broader application of AI to complex imaging data, which could cross-inform developments in radiology AI.

Source
EurekAlert
Related News

•EurekAlert
AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

•EurekAlert
AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

•EurekAlert
AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.