
A novel graph-based AI system, RSA-KG, significantly improves clinical decision support for diagnosing recurrent spontaneous abortion (RSA) by integrating multimodal clinical data and expert guidelines.
Key Details
- 1RSA-KG integrates structured and unstructured clinical data, including imaging reports, lab values, and molecular biomarkers.
- 2The knowledge graph is built from five major international RSA guidelines and extensive literature using NLP and multimodal AI models.
- 3A rigorous evaluation with 3,000 clinician-validated questions showed RSA-KG-enhanced LLMs outperform naive RAG and raw models (e.g., 86.5% vs. 76.5% accuracy for DeepSeek-R1).
- 4Qualitative expert scoring from 10 clinicians confirmed higher clinical usefulness of RSA-KG outputs over standard LLMs and other medical models.
- 5Key limitations include limited biomarker recency, single-discipline expert evaluation, and need for multicenter clinical validation.
Why It Matters

Source
EurekAlert
Related News

AI Outperforms Radiologists in Detecting Hidden Airway Objects on Chest CT
Southampton researchers developed an AI that surpassed radiologists in detecting hard-to-see airway obstructions on chest CT scans.

AI Repurposes Routine CT Scans for Osteoporosis Detection
AI algorithms can extract bone density data from routine CT scans to identify osteoporosis, enabling opportunistic screening.

AI Method Automates X-ray Absorption Spectroscopy for Material Analysis
Researchers have developed an AI-based approach to automate and enhance the analysis of X-ray absorption spectroscopy (XAS) data for materials science.