
A novel graph-based AI system, RSA-KG, significantly improves clinical decision support for diagnosing recurrent spontaneous abortion (RSA) by integrating multimodal clinical data and expert guidelines.
Key Details
- 1RSA-KG integrates structured and unstructured clinical data, including imaging reports, lab values, and molecular biomarkers.
- 2The knowledge graph is built from five major international RSA guidelines and extensive literature using NLP and multimodal AI models.
- 3A rigorous evaluation with 3,000 clinician-validated questions showed RSA-KG-enhanced LLMs outperform naive RAG and raw models (e.g., 86.5% vs. 76.5% accuracy for DeepSeek-R1).
- 4Qualitative expert scoring from 10 clinicians confirmed higher clinical usefulness of RSA-KG outputs over standard LLMs and other medical models.
- 5Key limitations include limited biomarker recency, single-discipline expert evaluation, and need for multicenter clinical validation.
Why It Matters

Source
EurekAlert
Related News

Mass General Brigham Spins Off AIwithCare to Transform Clinical Trial Screening
Mass General Brigham has spun out AIwithCare, a company commercializing RECTIFIER, an AI tool that automates and enhances clinical trial patient screening using EHR data.

AI-Driven CT Imaging Predicts Cardiac Events in Large UK Cohort
An AI tool analyzing CCTA images can predict future cardiovascular events and death in patients with suspected stable coronary artery disease.

AI Tool from UCLA Targets Undiagnosed Alzheimer's and Diagnostic Disparity
UCLA researchers developed an AI model using EHR data to better detect undiagnosed Alzheimer's disease, especially in underrepresented groups.